Biochemistry of microwave controlled Heracleum sosnowskyi (Manden.) roots with an ecotoxicological aspect.
Control
Ecotoxicology
Essential oil
Fatty acids
Roots
Sugars
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 06 2024
20 06 2024
Historique:
received:
02
04
2024
accepted:
18
06
2024
medline:
21
6
2024
pubmed:
21
6
2024
entrez:
20
6
2024
Statut:
epublish
Résumé
Sosnowski hogweed is an invasive weed in eastern-middle Europe that is dangerous to human health and the environment. The efficacy of its control using chemical and mechanical methods is limited. Electromagnetic radiation (microwaves) could be an environmentally friendly alternative for controlling this species. This study aims to: (1) Determine the effect of varying microwave treatment (MWT) durations on the control of S. hogweed using a device emitting microwaves at 2.45 GHz, 32.8 kW/m
Identifiants
pubmed: 38902463
doi: 10.1038/s41598-024-65164-4
pii: 10.1038/s41598-024-65164-4
doi:
Substances chimiques
Soil
0
Oils, Volatile
0
Fatty Acids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14260Informations de copyright
© 2024. The Author(s).
Références
Visockienė, J. S., Tumelienė, E. & Maliene, V. Identification of Heracleum sosnowskyi-invaded land using earth remote sensing data. Sustainability 12, 759. https://doi.org/10.3390/su12030759 (2020).
doi: 10.3390/su12030759
Anibaba, Q. A., Dyderski, M. K. & Jagodziński, A. M. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Sci. Total Environ. 825, 154053. https://doi.org/10.1016/j.scitotenv.2022.154053 (2022).
doi: 10.1016/j.scitotenv.2022.154053
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x (2012).
doi: 10.1111/j.1365-2486.2011.02636.x
Clements, D., DiTommaso, A. & Hyvönen, T. Ecology and management of weeds in a changing climate. In Recent advances in weed management (eds Chauhan, B. & Mahajan, G.) (Springer, New York, 2014). https://doi.org/10.1007/978-1-4939-1019-9_2 .
doi: 10.1007/978-1-4939-1019-9_2
Nielsen, C., Ravn, H. P., Nentwig, W. & Wade, M. The giant hogweed best practice manual. Guidelines for the management and control of an invasive weed in Europe. Forest and Landscape Denmark Hørsholm Kongevej 11, Hørsholm, Denmark (2005).
Page, N. A., Wall, R. E., Darbyshire, S. J. & Mulligan, G. A. The biology of invasive alien plants in Canada. 4. Heracleum mantegazzianum Sommier & Levier. Can. J. Plant. Sci. 86, 569–589. https://doi.org/10.4141/P05-158 (2006).
doi: 10.4141/P05-158
EU 2017. Commission implementing regulation (EU) 2017/1263 of 12 2017 updating the list of invasive alien species of union concern established by implementing regulation (EU) 2016/1141 pursuant to regulation (EU) No 1143/2014 of the european parliament and of the council. http://data.europa.eu/eli/reg_impl/2017/1263/oj . (Accessed February 10 2022).
Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x (2009).
doi: 10.1111/j.1365-2745.2009.01480.x
Semchuk, N. N. & Balun, O. V. Development of a biological method to control the poisonous weed plant Heracleum sosnowskyi Manden. IOP Conf. Ser. Earth Environ. Sci. 613, 012132. https://doi.org/10.1088/1755-1315/613/1/012132 (2020).
doi: 10.1088/1755-1315/613/1/012132
Bogdanov, V., Osipov, A., Garmanov, V., Efimova, G., Grik, A., Zavarin, B., Terleev, V. & Nikonorov, A. Problems and monitoring the spread of the ecologically dangerous plant Heracleum sosnowskyi in urbanized areas and methods to combat it. In E3S web of conferences, Vol. 258, pp. 08028 (2021). https://doi.org/10.1051/e3sconf/202125808028 .
Matoušková, M. et al. Phytotoxic effect of invasive Heracleum mantegazzianum essential oil on dicot and monocot species. Molecules 24(3), 425. https://doi.org/10.3390/molecules24030425 (2019).
doi: 10.3390/molecules24030425
Baležentienė, L., Stankevičienė, A. & Snieškienė, V. Heracleum sosnowskyi (Apiaceae) seed productivity and establishment in different habitats of central Lithuania. Ekologija 59(3), 123–133. https://doi.org/10.6001/ekologija.v59i3.2795 (2014).
doi: 10.6001/ekologija.v59i3.2795
Weryszko-Chmielewska, E. & Chwil, M. Localisation of furanocoumarins in the tissues and on the surface of shoots of Heracleum sosnowskyi. Botany 95(11), 1057–1070. https://doi.org/10.1139/cjb-2017-0043 (2017).
doi: 10.1139/cjb-2017-0043
Jakubowicz, O. et al. Heracleum sosnowskyi Manden. Ann. Agric. Environ. Med. 19(2), 327–328 (2012).
Zobel, A. M. & Brown, S. A. Seasonal changes of furanocoumarin concentrations in leaves of Heracleum lanatum. J. Chem. Ecol. 16(5), 16223–21634. https://doi.org/10.1007/BF01014095 (1990).
doi: 10.1007/BF01014095
Gulati, N. & Guttman-Yassky, E. Photocontact dermatitis. In Acneiform eruptions in dermatology (ed. Zeichner, J. A.) 273–278 (Springer, Berlin, 2014).
doi: 10.1007/978-1-4614-8344-1_39
Bronikowska, J., Szliszka, E., Jaworska, D., Czuba, Z. P. & Król, W. The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules 17(6), 6449–6464. https://doi.org/10.3390/molecules17066449 (2012).
doi: 10.3390/molecules17066449
Diwan, R., Shinde, A. & Malpathak, N. Phytochemical composition and antioxidant potential of Ruta graveolens L. in vitro culture lines. J Bot 2012, 1–6 (2012).
doi: 10.1155/2012/685427
Frumin, G. T. Toxicity of juice of Heracleum sosnowskyi. Russ. J. Gen. Chem. 93(13), 3483–3487. https://doi.org/10.1134/S1070363223130315 (2023).
doi: 10.1134/S1070363223130315
Mishyna, M., Laman, N., Prokhorov, V., Maninang, J. S. & Fujii, Y. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi Fruit. Nat. Prod. Commun. 10(5), 1934578X1501000518 (2015).
Tkachenko, K.G., Pokrovskii, L.M., Tkachev, A.V. Component composition of essential oils in some Heracleum L. species introduced in the Leningrad region. Communication 3. Essential oils of flowers and fruit, Rastitel'nye Resursy 37(4):69–76 (2001). https://doi.org/10.1007/s10600-009-9372-4
Weryszko-Chmielewska, E. & Chwil, M. Structures of Heracleum sosnovskii Manden. stem and leaves releasing photodermatosis- causing substances. Acta Agrobot 67, 25–32. https://doi.org/10.5586/aa.2014.057 (2012).
doi: 10.5586/aa.2014.057
Mojab, F. & Nickavar, B. Composition of the essential oil of the root of Heracleum persicum from Iran. Iran J. Pharmac. Res. 2, 245–247 (2003).
Klima, K. & Synowiec, A. Field emergence and the long-term efficacy of control of Heracleum sosnowskyi plants of different ages in Southern Poland. Weed Res. 56(5), 377–385. https://doi.org/10.1111/wre.12214 (2016).
doi: 10.1111/wre.12214
Contreras, C., Martín-Esparza, M. E., Chiralt, A. & Martínez-Navarrete, N. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. J. Food Eng. 88, 55–64. https://doi.org/10.1016/j.jfoodeng.2008.01.014 (2008).
doi: 10.1016/j.jfoodeng.2008.01.014
Román, L., Martínez, M. M., Rosell, C. M. & Gómez, M. Effect of microwave treatment on physicochemical properties of maize flour. Food Bioproc. Technol. 8, 1330–1335. https://doi.org/10.1007/s11947-015-1493-0 (2015).
doi: 10.1007/s11947-015-1493-0
Soysal, Y. Microwave drying characteristics of parsley. Biosyst. Eng. 89, 167–173. https://doi.org/10.1016/j.biosystemseng.2004.07.008 (2004).
doi: 10.1016/j.biosystemseng.2004.07.008
Jakubowski, T. Evaluating of the impact of pre-sowing microwave stimulation of bean seeds on the germination process. Agric. Eng. 2, 45–56. https://doi.org/10.14654/IR.2015.154.120 (2015).
doi: 10.14654/IR.2015.154.120
Henin, J. M., Charron, S., Luypaert, P. J., Jourez, B. & Hebert, J. Strategy to control the effectiveness of microwave treatment of wood in the framework of the implementation of ISPM 15. For. Prod. J. 58, 75–81 (2008).
Wang, X., Chen, H., Luo, K., Shao, J. & Yang, H. The influence of microwave drying on biomass pyrolysis. Energy Fuels 22, 67–74. https://doi.org/10.1021/ef700300m (2007).
doi: 10.1021/ef700300m
Diprose, M. F., Benson, F. A. & Willis, A. J. The effect of externally applied electrostatic fields, microwave radiation and electric currents on plants and other organisms, with special reference to weed control. Bot. Rev. 50, 171–223 (1984).
doi: 10.1007/BF02861092
Tripon, C. et al. Structural response of genomic DNA from grapevine (Vitis vinifera L.) varieties to microwaves irradiation: A Fourier transform infrared spectroscopy assessment. Biomed. Spectrosc. Imag. 5(3), 295–312. https://doi.org/10.3233/BSI-160138 (2016).
doi: 10.3233/BSI-160138
Grygierzec, B. et al. Condition of young Japanese Knotweed (Reynoutria japonica Houtt.) offshoots in response to microwave radiation of their Rhizomes. Agronomy 13(11), 2838. https://doi.org/10.3390/agronomy13112838 (2023).
doi: 10.3390/agronomy13112838
Skiles, J. W. Plant response to microwaves at 2.45 GHz. Acta Astronaut. 58, 258. https://doi.org/10.1016/j.actaastro.2005.12.007 (2006).
doi: 10.1016/j.actaastro.2005.12.007
Słowiński, K., Grygierzec, B., Synowiec, A., Tabor, S. & Araniti, F. Preliminary study of control and biochemical characteristics of giant hogweed (Heracleum sosnowskyi Manden.) treated with microwaves. Agronomy 12(6), 1335. https://doi.org/10.3390/agronomy12061335 (2022).
doi: 10.3390/agronomy12061335
Słowiński, K. et al. Microwave control of Reynoutria japonica Houtt., including ecotoxicological aspects and the resveratrol content in Rhizomes. Plants 13, 152. https://doi.org/10.3390/plants13020152 (2024).
doi: 10.3390/plants13020152
Wieczorek, J. & Baran, A. Pollution indices and biotests as useful tools for the evaluation of the degree of soil contamination by trace elements. J. Soil Sedim. 22, 559–657. https://doi.org/10.1007/s11368-021-03091-x (2022).
doi: 10.1007/s11368-021-03091-x
Halford, N. G., Curtis, T. Y., Muttucumaru, N., Postles, J. & Mottram, D. S. Sugars in crop plants. Ann. Appl. Biol. 158(1), 1–25. https://doi.org/10.1111/j.1744-7348.2010.00443.x (2011).
doi: 10.1111/j.1744-7348.2010.00443.x
Hu, L. et al. Antioxidant metabolism, photosystem II, and fatty acid composition of two tall fescue genotypes with different heat tolerance under high temperature stress. Front Plant Sci. 9, 1242. https://doi.org/10.3389/fpls.2018.01242 (2018).
doi: 10.3389/fpls.2018.01242
IUCN Policy Statement on Research Involving Species at Risk of Extinction. The 27th meeting of IUCN Council, Gland Switzerland, 14 June 1989. https://portals.iucn.org › library › efiles › documents › PP-003-En.pdf
Phytotoxkit, F.T.M. Seed germination and early growth microbiotest with higher plants. In Standard operational procedure; MicroBioTest Inc., Nazareth, Belgium, p. 24 (2004).
Ostracodtoxkit, F. Direct contact toxicity test for freshwater sediments. In Standard operational procedure; MicroBioTest Inc., Nazareth, Belgium, p. 35 (2001)
Corporation, M. Microtox manual toxicity testing handbook (Microbics Corporation, Carlsbad, 1992).
Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591. https://doi.org/10.2307/2333709 (1965).
doi: 10.2307/2333709
Mahalanobis, P. C. On generalized distance in statistics (Reprinted). Indian J. Stat. 80-A, S1–S7. https://doi.org/10.1007/s13171-019-00164-5 (2018).
doi: 10.1007/s13171-019-00164-5
Seidler-Łożykowsk, K. & Bocianowsk, J. Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Ind. Crops Pro. 35, 140–145. https://doi.org/10.1016/j.indcrop.2011.06.026 (2012).
doi: 10.1016/j.indcrop.2011.06.026
Bocianowski, J. & Liersch, A. Multidimensional analysis of diversity in genotypes of winter oilseed rape (Brassica napus L.). Agronomy 12, 633. https://doi.org/10.3390/agronomy12030633 (2022).
doi: 10.3390/agronomy12030633
Synowiec, A. & Kalemba, D. Composition and herbicidal effect of Heracleum sosnowskyi essential oil. Open Life Sci. 10, 425–432. https://doi.org/10.1515/biol-2015-0044 (2015).
doi: 10.1515/biol-2015-0044
Balahbib, A. et al. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 153, 112259. https://doi.org/10.1016/j.fct.2021.112259 (2021).
doi: 10.1016/j.fct.2021.112259
Liu, J. et al. Investigation of aroma characteristics of seven Chinese commercial sunflower seed oils using a combination of descriptive Analysis, GC-quadrupole-MS, and GC-Orbitrap-MS. Food Chem. X 18, 100690 (2023).
doi: 10.1016/j.fochx.2023.100690
Singh, A., Singh, D. & Singh, N. B. Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth Reg. 58, 163–171 (2009).
doi: 10.1007/s10725-009-9364-1
Seneme, E. F., Dos Santos, D. C., Silva, E. M. R., Franco, Y. E. M. & Longato, G. B. Pharmacological and therapeutic potential of myristicin: A literature review. Molecules 26(19), 5914. https://doi.org/10.3390/molecules26195914 (2021).
doi: 10.3390/molecules26195914
Ren, Y. et al. Alantolactone exhibits antiproliferative and apoptosis-promoting properties in colon cancer model via activation of the MAPK-JNK/c-Jun signaling pathway. Mol. Cell Biochem. 476, 4387–4403. https://doi.org/10.1007/s11010-021-04247-6 (2021).
doi: 10.1007/s11010-021-04247-6
Kratchanova, M., Pavlova, E. & Panchev, I. The effects of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohyd. Polym. 56, 181–185. https://doi.org/10.1016/j.carbpol.2004.01.009 (2004).
doi: 10.1016/j.carbpol.2004.01.009
Thalmann, M. & Santelia, D. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214, 943–951. https://doi.org/10.1111/nph.14491 (2017).
doi: 10.1111/nph.14491
Anju, N., Boora, P. & Khetarpaul, N. Carbohydrate profile and starch digestibility of newly released high yielding moth bean (Phaselous aconitifolius Jacq.) varieties as affected by microwave heating and pressure cooking. J. Food. Sci. Technol. 48, 246–250. https://doi.org/10.1007/s13197-010-0187-x (2011).
doi: 10.1007/s13197-010-0187-x
Shi, H. et al. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: Effect on arginine metabolism and ROS accumulation. J. Exp. Bot. 64, 1367–1379. https://doi.org/10.1093/jxb/ers400 (2013).
doi: 10.1093/jxb/ers400
Yu, Q. et al. Exogenous spermidine improves the sucrose metabolism of lettuce to resist high-temperature stress. Plant. Growth. Regul. 96, 497–509. https://doi.org/10.1007/s10725-022-00800-5 (2022).
doi: 10.1007/s10725-022-00800-5
Pearcy, R. W. Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 61, 484–486. https://doi.org/10.1104/pp.61.4.484 (1978).
doi: 10.1104/pp.61.4.484
Cyril, J., Powell, G., Duncan, R. N. & Baird, W. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop. Sci. 42, 2031–2037. https://doi.org/10.2135/cropsci2002.2031 (2002).
doi: 10.2135/cropsci2002.2031
Shiva, S. et al. Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants 9, 845. https://doi.org/10.3390/plants9070845 (2020).
doi: 10.3390/plants9070845
Prasertthai, P., Paethaisong, W., Theerakulpisut, P. & Dongsansuk, A. High temperature alters leaf lipid membrane composition associated with photochemistry of PSII and membrane thermostability in rice seedlings. Plants 11, 1454. https://doi.org/10.3390/plants11111454 (2022).
doi: 10.3390/plants11111454