Evidence from comprehensive independent validation studies for smooth pursuit dysfunction as a sensorimotor biomarker for psychosis.
Bipolar
Depression
Individual prediction
Machine learning
Psychosis
Smooth pursuit eye movements
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 Jun 2024
15 Jun 2024
Historique:
received:
11
03
2024
accepted:
10
06
2024
medline:
16
6
2024
pubmed:
16
6
2024
entrez:
15
6
2024
Statut:
epublish
Résumé
Smooth pursuit eye movements are considered a well-established and quantifiable biomarker of sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level based on neurobiological markers is limited by heterogeneity and requires comprehensive external validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor measures derived from smooth pursuit eye movements in a large sample of psychosis probands (N = 674) and healthy controls (N = 305) using multivariate pattern analysis. Balanced accuracies of 64% for the prediction of psychosis status are in line with recent results from other large heterogenous psychiatric samples. They are confirmed by external validation in independent large samples including probands with (1) psychosis (N = 727) versus healthy controls (N = 292), (2) psychotic (N = 49) and non-psychotic bipolar disorder (N = 36), and (3) non-psychotic affective disorders (N = 119) and psychosis (N = 51) yielding accuracies of 65%, 66% and 58%, respectively, albeit slightly different psychosis syndromes. Our findings make a significant contribution to the identification of biologically defined profiles of heterogeneous psychosis syndromes on an individual level underlining the impact of sensorimotor dysfunction in psychosis.
Identifiants
pubmed: 38879556
doi: 10.1038/s41598-024-64487-6
pii: 10.1038/s41598-024-64487-6
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Validation Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
13859Subventions
Organisme : Innovative Medical Research of the University of Münster Medical School
ID : ME 1 2 18 05
Organisme : German Research Council
ID : LE 1122/7-1
Informations de copyright
© 2024. The Author(s).
Références
García-Gutiérrez, M. S. et al. Biomarkers in psychiatry: Concept, definition, types and relevance to the clinical reality. Front. Psychiatry 11, 1–14 (2020).
doi: 10.3389/fpsyt.2020.00432
Miranda, L., Paul, R., Pütz, B., Koutsouleris, N. & Müller-Myhsok, B. Systematic review of functional MRI applications for psychiatric disease subtyping. Front. Psychiatry https://doi.org/10.3389/fpsyt.2021.665536 (2021).
doi: 10.3389/fpsyt.2021.665536
pubmed: 34744805
pmcid: 8569315
Quaak, M., van de Mortel, L., Thomas, R. M. & van Wingen, G. Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis. NeuroImage Clin. 30, 102584 (2021).
pubmed: 33677240
pmcid: 8209481
doi: 10.1016/j.nicl.2021.102584
Steardo, L. et al. Application of support vector machine on FMRI data as biomarkers in schizophrenia diagnosis: A systematic review. Front. Psychiatry 11, 1–9 (2020).
doi: 10.3389/fpsyt.2020.00588
Bracher-Smith, M., Crawford, K. & Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: A systematic review. Mol. Psychiatry 26, 70–79 (2021).
pubmed: 32591634
doi: 10.1038/s41380-020-0825-2
Rashid, B. & Calhoun, V. Towards a brain-based predictome of mental illness. Hum. Brain Mapp. 41, 3468–3535 (2020).
pubmed: 32374075
pmcid: 7375108
doi: 10.1002/hbm.25013
Shatte, A. B. R., Hutchinson, D. M. & Teague, S. J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 49, 1426–1448 (2019).
pubmed: 30744717
doi: 10.1017/S0033291719000151
Schnack, H. G. Improving individual predictions: Machine learning approaches for detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases). Schizophr. Res. 214, 34–42 (2019).
pubmed: 29074332
doi: 10.1016/j.schres.2017.10.023
Clementz, B. et al. Psychosis biotypes: Replication and validation from the B-SNIP consortium. Schizophr. Bull. 48, 56–68 (2022).
pubmed: 34409449
doi: 10.1093/schbul/sbab090
Varoquaux, G. Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage 180, 68–77 (2018).
pubmed: 28655633
doi: 10.1016/j.neuroimage.2017.06.061
Flint, C. et al. Systematic misestimation of machine learning performance in neuroimaging studies of depression. Neuropsychopharmacology 46, 1510 (2021).
pubmed: 33958703
pmcid: 8209109
doi: 10.1038/s41386-021-01020-7
Varoquaux, G. et al. Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. Neuroimage 145, 166–179 (2017).
pubmed: 27989847
doi: 10.1016/j.neuroimage.2016.10.038
Arbabshirani, M. R., Plis, S., Sui, J. & Calhoun, V. D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145, 137–165 (2017).
pubmed: 27012503
doi: 10.1016/j.neuroimage.2016.02.079
Winter, N. R. et al. Quantifying deviations of brain structure and function in major depressive disorder across neuroimaging modalities. JAMA Psychiatry 79, 879 (2022).
pubmed: 35895072
pmcid: 9330277
doi: 10.1001/jamapsychiatry.2022.1780
Shi, D. et al. Machine learning of schizophrenia detection with structural and functional neuroimaging. Dis. Mark. https://doi.org/10.1155/2021/9963824 (2021).
doi: 10.1155/2021/9963824
Jo, Y. T. et al. Diagnosing schizophrenia with network analysis and a machine learning method. Int. J. Methods Psychiatr. Res. https://doi.org/10.1002/mpr.1818 (2020).
doi: 10.1002/mpr.1818
pubmed: 32022360
pmcid: 7051840
Leigh, J. R. & Zee, D. S. The Neurology of Eye Movements (Oxford University Press, 2015). https://doi.org/10.1093/med/9780199969289.001.0001 .
doi: 10.1093/med/9780199969289.001.0001
Levy, D. L., Sereno, A. B., Gooding, D. C. & O’Driscoll, G. A. Eye tracking dysfunction in schizophrenia: Characterization and pathophysiology. Curr. Top. Behav. Neurosci. 4, 311–347 (2010).
pubmed: 21312405
pmcid: 3212396
doi: 10.1007/7854_2010_60
O’Driscoll, G. A. & Callahan, B. L. Smooth pursuit in schizophrenia: A meta-analytic review of research since 1993. Brain Cogn. 68, 359–370 (2008).
pubmed: 18845372
doi: 10.1016/j.bandc.2008.08.023
Lencer, R. et al. Pursuit eye movements as an intermediate phenotype across psychotic disorders: Evidence from the B-SNIP study. Schizophr. Res. 169, 326–333 (2015).
pubmed: 26481615
pmcid: 4681655
doi: 10.1016/j.schres.2015.09.032
Morita, K., Miura, K., Kasai, K. & Hashimoto, R. Eye movement characteristics in schizophrenia: A recent update with clinical implications. Neuropsychopharmacol. Rep. 40, 2–9 (2020).
pubmed: 31774633
doi: 10.1002/npr2.12087
Wolf, A., Ueda, K. & Hirano, Y. Recent updates of eye movement abnormalities in patients with schizophrenia: A scoping review. Psychiatry Clin. Neurosci. 75, 82–100 (2021).
pubmed: 33314465
pmcid: 7986125
doi: 10.1111/pcn.13188
Lencer, R. et al. Sensorimotor transformation deficits for smooth pursuit in first-episode affective psychoses and schizophrenia. Biol. Psychiatry 67, 217–223 (2010).
pubmed: 19782964
doi: 10.1016/j.biopsych.2009.08.005
Lencer, R. et al. Altered transfer of visual motion information to parietal association cortex in untreated first-episode psychosis: Implications for pursuit eye tracking. Psychiatry Res. 194, 30–38 (2011).
pubmed: 21873035
pmcid: 3185164
doi: 10.1016/j.pscychresns.2011.06.011
Sweeney, J. A. et al. Eye tracking dysfunction in schizophrenia: Characterization of component eye movement abnormalities, diagnostic specificity, and the role of attention. J. Abnorm. Psychol. 103, 222–230 (1994).
pubmed: 8040491
doi: 10.1037/0021-843X.103.2.222
Holzman, P. S., Proctor, L. R. & Hughes, D. W. Eye-tracking patterns in schizophrenia. Science 181, 179–181 (1973).
pubmed: 4711736
doi: 10.1126/science.181.4095.179
Tamminga, C. A. et al. Clinical phenotypes of psychosis in the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP). Am. J. Psychiatry 170, 1263–1274 (2013).
pubmed: 23846857
doi: 10.1176/appi.ajp.2013.12101339
Clementz, B. et al. Testing psychosis phenotypes from bipolar-schizophrenia network for intermediate phenotypes for clinical application: Biotype characteristics and targets. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 808–818 (2020).
pubmed: 32600898
Xiao, Y. et al. Subtyping schizophrenia patients based on patterns of structural brain alterations. Schizophr. Bull. 48, 241–250 (2022).
pubmed: 34508358
doi: 10.1093/schbul/sbab110
Mothi, S. S. et al. Machine learning improved classification of psychoses using clinical and biological stratification: Update from the bipolar-schizophrenia network for intermediate phenotypes (B-SNIP). Schizophr. Res. 214, 60–69 (2019).
pubmed: 29807804
doi: 10.1016/j.schres.2018.04.037
Reininghaus, U. et al. Transdiagnostic dimensions of psychosis in the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP). World Psychiatry 18, 67–76 (2019).
pubmed: 30600629
pmcid: 6313235
doi: 10.1002/wps.20607
Takahashi, J. et al. Eye movement abnormalities in major depressive disorder. Front. Psychiatry https://doi.org/10.3389/fpsyt.2021.673443 (2021).
doi: 10.3389/fpsyt.2021.673443
pubmed: 35185642
pmcid: 8656455
Bey, K. et al. Schizotypy and smooth pursuit eye movements as potential endophenotypes of obsessive-compulsive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 269, 235–243 (2019).
pubmed: 29721727
doi: 10.1007/s00406-018-0899-x
Kathmann, N., Wagner, M., Rendtorff, N., Schöchlin, C. & Engel, R. R. Information processing during eye tracking as revealed by event-related potentials in schizophrenics, alcoholics, and healthy controls. Schizophr. Res. 16, 145–156 (1995).
pubmed: 7577768
doi: 10.1016/0920-9964(94)00066-H
Ross, R. G., Olincy, A., Harris, J. G., Sullivan, B. & Radant, A. Smooth pursuit eye movements in schizophrenia and attentional dysfunction: Adults with schizophrenia, ADHD, and a normal comparison group. Biol. Psychiatry 48, 197–203 (2000).
pubmed: 10924662
doi: 10.1016/S0006-3223(00)00825-8
Lencer, R. et al. Smooth pursuit deficits in schizophrenia, affective disorder and obsessive-compulsive disorder. Psychol. Med. 34, 451–460 (2004).
pubmed: 15259830
doi: 10.1017/S0033291703001314
Hutton, S. B. et al. The relationship between antisaccades, smooth pursuit, and executive dysfunction in first-episode schizophrenia. Biol. Psychiatry 56, 553–559 (2004).
pubmed: 15476684
doi: 10.1016/j.biopsych.2004.07.002
Sweeney, J. A., Haas, G. L. & Li, S. Neuropsychological and eye movement abnormalities in first-episode and chronic schizophrenia. Schizophr. Bull. 18, 283–293 (1992).
pubmed: 1621074
doi: 10.1093/schbul/18.2.283
Clementz, B., Sweeney, J. A., Hirt, M. & Haas, G. Pursuit gain and saccadic intrusions in first-degree relatives of probands with schizophrenia. J. Abnorm. Psychol. 99, 327–335 (1990).
pubmed: 2266205
doi: 10.1037/0021-843X.99.4.327
Reilly, J. L., Lencer, R., Bishop, J. R., Keedy, S. & Sweeney, J. A. Pharmacological treatment effects on eye movement control. Brain Cogn. 68, 415–435 (2008).
pubmed: 19028266
pmcid: 3159189
doi: 10.1016/j.bandc.2008.08.026
Fusar-Poli, P. et al. The psychosis high-risk state. JAMA Psychiatry 70, 107 (2013).
pubmed: 23165428
pmcid: 4356506
doi: 10.1001/jamapsychiatry.2013.269
Jaeschke, R., Guyatt, G. H. & Sackett, D. L. Users’ guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients?. JAMA 271, 703–707 (1994).
pubmed: 8309035
doi: 10.1001/jama.1994.03510330081039
Lencer, R. & Trillenberg, P. Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn. 68, 219–228 (2008).
pubmed: 18835076
doi: 10.1016/j.bandc.2008.08.013
Perna, G., Grassi, M., Caldirola, D. & Nemeroff, C. B. The revolution of personalized psychiatry: Will technology make it happen sooner?. Psychol. Med. 48, 705–713 (2018).
pubmed: 28967349
doi: 10.1017/S0033291717002859
Diefendorf, A. R. & Dodge, R. An experimantal study of the ocular reactions of the insane from photographic records. Brain 31, 451–489 (1908).
doi: 10.1093/brain/31.3.451
St Clair, D. et al. Eye movement patterns can distinguish schizophrenia from the major affective disorders and healthy control subjects. Schizophr. Bull. Open https://doi.org/10.1093/schizbullopen/sgac032 (2022).
doi: 10.1093/schizbullopen/sgac032
pubmed: 35669867
pmcid: 9155263
Bestelmeyer, P. E. G. et al. Global visual scanning abnormalities in schizophrenia and bipolar disorder. Schizophr. Res. 87, 212–222 (2006).
pubmed: 16860975
doi: 10.1016/j.schres.2006.06.015
Grunze, H. & Cetkovich-Bakmas, M. “Apples and pears are similar, but still different things”. Bipolar disorder and schizophrenia- discrete disorders or just dimensions ?. J. Affect. Disord. 290, 178–187 (2021).
pubmed: 34000571
doi: 10.1016/j.jad.2021.04.064
Claude, L. A., Houenou, J., Duchesnay, E. & Favre, P. Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions. Bipolar Disord. 22, 334–355 (2020).
pubmed: 32108409
doi: 10.1111/bdi.12895
Koutsouleris, N. et al. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain 138, 2059–2073 (2015).
pubmed: 25935725
pmcid: 4572486
doi: 10.1093/brain/awv111
Ivleva, E. I. et al. Smooth pursuit eye movement, prepulse inhibition, and auditory paired stimuli processing endophenotypes across the schizophrenia-bipolar disorder psychosis dimension. Schizophr. Bull. 40, 642–652 (2014).
pubmed: 23599252
doi: 10.1093/schbul/sbt047
Salazar de Pablo, G. et al. Probability of transition to psychosis in individuals at clinical high risk: An updated meta-analysis. JAMA Psychiatry 78, 970–978 (2021).
pubmed: 34259821
doi: 10.1001/jamapsychiatry.2021.0830
Lencer, R. et al. Effects of second-generation antipsychotic medication on smooth pursuit performance in antipsychotic-naive schizophrenia. Arch. Gen. Psychiatry 65, 1146–1154 (2008).
pubmed: 18838631
pmcid: 3174103
doi: 10.1001/archpsyc.65.10.1146
First, M. B., Spitzer, R. L., Gibbon, M. & Williams, J. B. W. Structured Clinical Interview for DSM-IV Axis I Disorders-Patient Edition (SCID-I/P, Version 2.0) (Biometrics Research Department, New York State Psychiatric Institute, 1995).
Wilkinson, G. S. & Robertson, G. J. Wide Range Achievement Test 4 (WRAT4) (Psychological Assessment Resources, 2006).
Pfohl, B., Blum, N. & Zimmerman, M. Structured Interview for DSM-IV Personality: SIDP-IV (American Psychiatric Pub, 1997).
Brakemeier, S. et al. Smooth pursuit eye movement deficits as a biomarker for psychotic features in bipolar disorder—Findings from the PARDIP study. Bipolar Disord. 22, 602–611 (2020).
pubmed: 31721386
doi: 10.1111/bdi.12865
Kircher, T. et al. Neurobiology of the major psychoses: A translational perspective on brain structure and function-the FOR2107 consortium. Eur. Arch. Psychiatry Clin. Neurosci. 269, 949–962 (2019).
pubmed: 30267149
doi: 10.1007/s00406-018-0943-x
Koutsouleris, N. et al. Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: A multimodal, multisite machine learning analysis. JAMA Psychiatry 75, 1156–1172 (2018).
pubmed: 30267047
pmcid: 6248111
doi: 10.1001/jamapsychiatry.2018.2165
Schwarzer, J. M. et al. The impact of visual dysfunctions in recent-onset psychosis and clinical high-risk state for psychosis. Neuropsychopharmacology https://doi.org/10.1038/s41386-022-01385-3 (2022).
doi: 10.1038/s41386-022-01385-3
pubmed: 35982238
pmcid: 9556592
Rashbass, C. The relationship between saccadic and smooth tracking eye movements. J. Physiol. 159, 326–338 (1961).
pubmed: 14490422
pmcid: 1359508
doi: 10.1113/jphysiol.1961.sp006811
Huang, L. Y. et al. Antisaccade error rates and gap effects in psychosis syndromes from bipolar-schizophrenia network for intermediate phenotypes 2 (B-SNIP2). Psychol. Med. https://doi.org/10.1017/S003329172000478X (2021).
doi: 10.1017/S003329172000478X
pubmed: 34011426
pmcid: 8060544
Sprenger, A. et al. The role of prediction and anticipation on age-related effects on smooth pursuit eye movements. Ann. N. Y. Acad. Sci. 1233, 168–176 (2011).
pubmed: 21950990
doi: 10.1111/j.1749-6632.2011.06114.x
Lisberger, S. G., Morris, E. J. & Tychsen, L. Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annu. Rev. Neurosci. 10, 97–129 (1987).
pubmed: 3551767
doi: 10.1146/annurev.ne.10.030187.000525
Carl, J. R. & Gellman, R. S. Human smooth pursuit: Stimulus-dependent responses. J. Neurophysiol. 57, 1446–1463 (1987).
pubmed: 3585475
doi: 10.1152/jn.1987.57.5.1446
Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).
pubmed: 3616518
doi: 10.1093/schbul/13.2.261
Andreasen, N. C. The scale for the assessment of negative symptoms (SANS): Conceptual and theoretical foundations. Br. J. Psychiatry 155, 49–52 (1989).
doi: 10.1192/S0007125000291496
Van Erp, T. G. M. et al. Converting positive and negative symptom scores between PANSS and SAPS/SANS. Schizophr. Res. 152, 289–294 (2014).
pubmed: 24332632
doi: 10.1016/j.schres.2013.11.013
Montgomery, S. A. & Åsberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389 (1979).
pubmed: 444788
doi: 10.1192/bjp.134.4.382
Beck, A. T. & Steer, R. A. Internal consistencies of the original and revised beck depression inventory. J. Clin. Psychol. 40, 1365–1367 (1984).
pubmed: 6511949
doi: 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D
Beck, A. T., Steer, R. A. & Brown, G. K. Manual for Beck Depression Inventory-II (Psychological Corporation, 1996).
Müller, M. J., Szegedi, A., Wetzel, H. & Benkert, O. Moderate and severe depression: Gradations for the Montgomery-Åsberg depression rating scale. J. Affect. Disord. 60, 137–140 (2000).
pubmed: 10967373
doi: 10.1016/S0165-0327(99)00162-7
Young, R. C., Biggs, J. T., Ziegler, V. E. & Meyer, D. A. A rating scale for mania: Reliability, validity and sensitivity. Br. J. Psychiatry 133, 429–435 (1978).
pubmed: 728692
doi: 10.1192/bjp.133.5.429
Lehrl, S. Mehrfachwahl-Wortschatz-Intelligenztest MWT-B [Multiple Choice Vocabulary Test, Version B] (Spitta, 2005).
Wechsler, D. Wechsler Adult Intelligence Scale-Fourth Edition (WAIS–IV) (NCS Pearson, 2008).
Leenings, R. et al. PHOTONAI—A Python API for rapid machine learning model development. PLoS One 16, e0254062 (2021).
pubmed: 34288935
pmcid: 8294542
doi: 10.1371/journal.pone.0254062
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
doi: 10.1613/jair.953
Collingridge, D. S. A Primer on quantitized data analysis and permutation testing. J. Mix. Methods Res. 7, 81–97 (2013).
doi: 10.1177/1558689812454457
Andreasen, N. C., Pressler, M., Nopoulos, P., Miller, D. & Ho, B. C. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol. Psychiatry 67, 255–262 (2010).
pubmed: 19897178
doi: 10.1016/j.biopsych.2009.08.040
Keefe, R. et al. Norms and standardization of the brief assessment of cognition in schizophrenia (BACS). Schizophr. Res. 102, 108–115 (2008).
pubmed: 18495435
doi: 10.1016/j.schres.2008.03.024
Wright, S. P. Adjusted p-values for simultaneous inference. Biometrics 48, 1005–1013 (1992).
doi: 10.2307/2532694
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).