Histone serotonylation in dorsal raphe nucleus contributes to stress- and antidepressant-mediated gene expression and behavior.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
13 Jun 2024
Historique:
received: 18 09 2023
accepted: 28 05 2024
medline: 14 6 2024
pubmed: 14 6 2024
entrez: 13 6 2024
Statut: epublish

Résumé

Mood disorders are an enigmatic class of debilitating illnesses that affect millions of individuals worldwide. While chronic stress clearly increases incidence levels of mood disorders, including major depressive disorder (MDD), stress-mediated disruptions in brain function that precipitate these illnesses remain largely elusive. Serotonin-associated antidepressants (ADs) remain the first line of therapy for many with depressive symptoms, yet low remission rates and delays between treatment and symptomatic alleviation have prompted skepticism regarding direct roles for serotonin in the precipitation and treatment of affective disorders. Our group recently demonstrated that serotonin epigenetically modifies histone proteins (H3K4me3Q5ser) to regulate transcriptional permissiveness in brain. However, this non-canonical phenomenon has not yet been explored following stress and/or AD exposures. Here, we employed a combination of genome-wide and biochemical analyses in dorsal raphe nucleus (DRN) of male and female mice exposed to chronic social defeat stress, as well as in DRN of human MDD patients, to examine the impact of stress exposures/MDD diagnosis on H3K4me3Q5ser dynamics, as well as associations between the mark and depression-related gene expression. We additionally assessed stress-induced/MDD-associated regulation of H3K4me3Q5ser following AD exposures, and employed viral-mediated gene therapy in mice to reduce H3K4me3Q5ser levels in DRN and examine its impact on stress-associated gene expression and behavior. We found that H3K4me3Q5ser plays important roles in stress-mediated transcriptional plasticity. Chronically stressed mice displayed dysregulated H3K4me3Q5ser dynamics in DRN, with both AD- and viral-mediated disruption of these dynamics proving sufficient to attenuate stress-mediated gene expression and behavior. Corresponding patterns of H3K4me3Q5ser regulation were observed in MDD subjects on vs. off ADs at their time of death. These findings thus establish a neurotransmission-independent role for serotonin in stress-/AD-associated transcriptional and behavioral plasticity, observations of which may be of clinical relevance to human MDD and its treatment.

Identifiants

pubmed: 38871707
doi: 10.1038/s41467-024-49336-4
pii: 10.1038/s41467-024-49336-4
doi:

Substances chimiques

Histones 0
Antidepressive Agents 0
Serotonin 333DO1RDJY
histone H3 trimethyl Lys4 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5042

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH116900
Pays : United States
Organisme : NIMH NIH HHS
ID : F31 MH116588
Pays : United States
Organisme : NIMH NIH HHS
ID : F32 MH126534
Pays : United States
Organisme : NIMH NIH HHS
ID : K99 MH120334
Pays : United States
Organisme : NINDS NIH HHS
ID : F99 NS125774
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Warnick, S. J. Jr., Mehdi, L. & Kowalkowski, J. Wait-there’s evidence for that? Integrative medicine treatments for major depressive disorder. Int. J. Psychiatry Med. 56, 334–343 (2021).
pubmed: 34521233 doi: 10.1177/00912174211046353
Duman, R. S., Aghajanian, G. K., Sanacora, G. & Krystal, J. H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249 (2016).
pubmed: 26937618 pmcid: 5405628 doi: 10.1038/nm.4050
Mendlewicz, J. Towards achieving remission in the treatment of depression. Dialogues Clin. Neurosci. 10, 371–375 (2008).
pubmed: 19170394 pmcid: 3181889 doi: 10.31887/DCNS.2008.10.4/jmendlewicz
Blier, P. & El Mansari, M. Serotonin and beyond: therapeutics for major depression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120536 (2013).
pubmed: 23440470 pmcid: 3638389 doi: 10.1098/rstb.2012.0536
Moncrieff, J. et al. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol. Psychiatry 28, 3243–3256 (2023).
pubmed: 35854107 doi: 10.1038/s41380-022-01661-0
Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).
pubmed: 19630576 pmcid: 5864293 doi: 10.1146/annurev.med.60.042307.110802
Huang, K. W. et al. Molecular and anatomical organization of the dorsal raphe nucleus. Elife 8, e46464 (2019).
pubmed: 31411560 pmcid: 6726424 doi: 10.7554/eLife.46464
Kohler, S., Cierpinsky, K., Kronenberg, G. & Adli, M. The serotonergic system in the neurobiology of depression: relevance for novel antidepressants. J. Psychopharmacol. 30, 13–22 (2016).
pubmed: 26464458 doi: 10.1177/0269881115609072
Wainwright, S. R. & Galea, L. A. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast. 2013, 805497 (2013).
pubmed: 23691371 pmcid: 3649690 doi: 10.1155/2013/805497
Morrissette, D. A. & Stahl, S. M. Modulating the serotonin system in the treatment of major depressive disorder. CNS Spectr. 19, 57–67 (2014).
pubmed: 25544378 doi: 10.1017/S1092852914000613
Fouquet, G., Coman, T., Hermine, O. & Cote, F. Serotonin, hematopoiesis and stem cells. Pharm. Res 140, 67–74 (2019).
doi: 10.1016/j.phrs.2018.08.005
Wirth, A., Holst, K. & Ponimaskin, E. How serotonin receptors regulate morphogenic signalling in neurons. Prog. Neurobiol. 151, 35–56 (2017).
pubmed: 27013076 doi: 10.1016/j.pneurobio.2016.03.007
Kolodziejczak, M. et al. Serotonin modulates developmental microglia via 5-HT2B receptors: potential implication during synaptic refinement of retinogeniculate projections. ACS Chem. Neurosci. 6, 1219–1230 (2015).
pubmed: 25857335 doi: 10.1021/cn5003489
Hirschfeld, R. M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 61, 4–6 (2000).
pubmed: 10775017
Colgan, L. A., Putzier, I. & Levitan, E. S. Activity-dependent vesicular monoamine transporter-mediated depletion of the nucleus supports somatic release by serotonin neurons. J. Neurosci. 29, 15878–15887 (2009).
pubmed: 20016104 pmcid: 2796554 doi: 10.1523/JNEUROSCI.4210-09.2009
Young, A. B., Pert, C. D., Brown, D. G., Taylor, K. M. & Snyder, S. H. Nuclear localization of histamine in neonatal rat brain. Science 173, 247–249 (1971).
pubmed: 5104178 doi: 10.1126/science.173.3993.247
Walther, D. J. et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115, 851–862 (2003).
pubmed: 14697203 doi: 10.1016/S0092-8674(03)01014-6
Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019).
pubmed: 30867594 pmcid: 6557285 doi: 10.1038/s41586-019-1024-7
Lepack, A. E. et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 368, 197–201 (2020).
pubmed: 32273471 pmcid: 7228137 doi: 10.1126/science.aaw8806
Zheng, Q. et al. Histone monoaminylation dynamics are regulated by a single enzyme and promote neural rhythmicity. bioRxiv https://www.biorxiv.org/content/10.1101/2022.12.06.519310v1 (2022).
Sardar, D. et al. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science 380, eade0027 (2023).
pubmed: 37319217 pmcid: 10874521 doi: 10.1126/science.ade0027
Lukasak, B. J. et al. TGM2-mediated histone transglutamination is dictated by steric accessibility. Proc. Natl Acad. Sci. USA 119, e2208672119 (2022).
pubmed: 36256821 pmcid: 9618071 doi: 10.1073/pnas.2208672119
Al-Kachak, A. & Maze, I. Post-translational modifications of histone proteins by monoamine neurotransmitters. Curr. Opin. Chem. Biol. 74, 102302 (2023).
pubmed: 37054563 pmcid: 10225327 doi: 10.1016/j.cbpa.2023.102302
Zhao, S. et al. Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout. Proc. Natl. Acad. Sci. USA 118, e2016742118 (2021).
pubmed: 33526675 pmcid: 8017887 doi: 10.1073/pnas.2016742118
Fulton, S. L. et al. Histone H3 dopaminylation in ventral tegmental area underlies heroin-induced transcriptional and behavioral plasticity in male rats. Neuropsychopharmacology 47, 1776–1783 (2022).
pubmed: 35094023 pmcid: 9372029 doi: 10.1038/s41386-022-01279-4
Stewart, A. F., Lepack, A. E., Fulton, S. L., Safovich, P. & Maze, I. Histone H3 dopaminylation in nucleus accumbens, but not medial prefrontal cortex, contributes to cocaine-seeking following prolonged abstinence. Mol. Cell Neurosci. 125, 103824 (2023).
pubmed: 36842545 pmcid: 10247417 doi: 10.1016/j.mcn.2023.103824
Sun, H., Kennedy, P. J. & Nestler, E. J. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38, 124–137 (2013).
pubmed: 22692567 doi: 10.1038/npp.2012.73
Nagy, C., Vaillancourt, K. & Turecki, G. A role for activity-dependent epigenetics in the development and treatment of major depressive disorder. Genes Brain Behav. 17, e12446 (2018).
pubmed: 29251832 doi: 10.1111/gbb.12446
Kronman, H. et al. Long-term behavioral and cell-type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons. Nat. Neurosci. 24, 667–676 (2021).
pubmed: 33723435 pmcid: 8216773 doi: 10.1038/s41593-021-00814-8
Maitra, S. et al. Histone lysine demethylase JMJD2D/KDM4D and family members mediate effects of chronic social defeat stress on mouse hippocampal neurogenesis and mood disorders. Brain Sci. 10, 833 (2020).
pubmed: 33182385 pmcid: 7695311 doi: 10.3390/brainsci10110833
Hamilton, P. J. et al. Cell-type-specific epigenetic editing at the fosb gene controls susceptibility to social defeat stress. Neuropsychopharmacology 43, 272–284 (2018).
pubmed: 28462942 doi: 10.1038/npp.2017.88
Khandelwal, N., Dey, S. K., Chakravarty, S. & Kumar, A. miR-30 family miRNAs mediate the effect of chronic social defeat stress on hippocampal neurogenesis in mouse depression model. Front. Mol. Neurosci. 12, 188 (2019).
pubmed: 31440139 pmcid: 6694739 doi: 10.3389/fnmol.2019.00188
Liu, B., Liu, J., Wang, M., Zhang, Y. & Li, L. From serotonin to neuroplasticity: evolvement of theories for major depressive disorder. Front. Cell Neurosci. 11, 305 (2017).
pubmed: 29033793 pmcid: 5624993 doi: 10.3389/fncel.2017.00305
Miyanishi, H., Muramatsu, S. I. & Nitta, A. Striatal Shati/Nat8l-BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation. Neuropsychopharmacology 46, 1594–1605 (2021).
pubmed: 34099867 pmcid: 8280178 doi: 10.1038/s41386-021-01033-2
Qian, W. et al. Depressive-like behaviors induced by chronic social defeat stress are associated with HDAC7 reduction in the nucleus accumbens. Front. Psychiatry 11, 586904 (2020).
pubmed: 33574772 doi: 10.3389/fpsyt.2020.586904
Golden, S. A., Covington, H. E. 3rd, Berton, O. & Russo, S. J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191 (2011).
pubmed: 21799487 pmcid: 3220278 doi: 10.1038/nprot.2011.361
Liu, Y. et al. Chromodomain Y-like protein-mediated histone crotonylation regulates stress-induced depressive behaviors. Biol. Psychiatry 85, 635–649 (2019).
pubmed: 30665597 doi: 10.1016/j.biopsych.2018.11.025
Sun, H. et al. BAZ1B in nucleus accumbens regulates reward-related behaviors in response to distinct emotional stimuli. J. Neurosci. 36, 3954–3961 (2016).
pubmed: 27053203 pmcid: 4821908 doi: 10.1523/JNEUROSCI.3254-15.2016
Fang, W. et al. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J. Affect. Disord. 260, 302–313 (2020).
pubmed: 31521867 doi: 10.1016/j.jad.2019.09.013
Covington, H. E. et al. Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neurosci. Lett. 493, 122–126 (2011).
pubmed: 21335060 pmcid: 3074929 doi: 10.1016/j.neulet.2011.02.022
Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).
pubmed: 17956738 doi: 10.1016/j.cell.2007.09.018
Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).
pubmed: 16469931 doi: 10.1126/science.1120972
Kornstein, S. G. et al. Gender differences in chronic major and double depression. J. Affect. Disord. 60, 1–11 (2000).
pubmed: 10940442 doi: 10.1016/S0165-0327(99)00158-5
Picco, L., Subramaniam, M., Abdin, E., Vaingankar, J. A. & Chong, S. A. Gender differences in major depressive disorder: findings from the Singapore Mental Health Study. Singap. Med. J. 58, 649–655 (2017).
doi: 10.11622/smedj.2016144
Sramek, J. J., Murphy, M. F. & Cutler, N. R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci. 18, 447–457 (2016).
pubmed: 28179816 pmcid: 5286730 doi: 10.31887/DCNS.2016.18.4/ncutler
Takahashi, A. et al. Establishment of a repeated social defeat stress model in female mice. Sci. Rep. 7, 12838 (2017).
pubmed: 28993631 pmcid: 5634448 doi: 10.1038/s41598-017-12811-8
Newman, E. L. et al. Fighting females: neural and behavioral consequences of social defeat stress in female mice. Biol. Psychiatry 86, 657–668 (2019).
pubmed: 31255250 pmcid: 6788975 doi: 10.1016/j.biopsych.2019.05.005
Newman, E. L., Covington, H. E. 3rd, Leonard, M. Z., Burk, K. & Miczek, K. A. Hypoactive thalamic Crh+ cells in a female mouse model of alcohol drinking after social trauma. Biol. Psychiatry 90, 563–574 (2021).
pubmed: 34281710 pmcid: 8463500 doi: 10.1016/j.biopsych.2021.05.022
Connor, D. A. & Gould, T. J. Chronic fluoxetine ameliorates adolescent chronic nicotine exposure-induced long-term adult deficits in trace conditioning. Neuropharmacology 125, 272–283 (2017).
pubmed: 28778833 pmcid: 5757519 doi: 10.1016/j.neuropharm.2017.07.033
Maze, I. et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87, 77–94 (2015).
pubmed: 26139371 pmcid: 4491146 doi: 10.1016/j.neuron.2015.06.014
Matthews, G. A. et al. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164, 617–631 (2016).
pubmed: 26871628 pmcid: 4752823 doi: 10.1016/j.cell.2015.12.040
Monteggia, L. M. et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol. Psychiatry 61, 187–197 (2007).
pubmed: 16697351 doi: 10.1016/j.biopsych.2006.03.021
Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).
pubmed: 25150836 pmcid: 4404308 doi: 10.1038/nbt.2931
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Cahill, K. M., Huo, Z., Tseng, G. C., Logan, R. W. & Seney, M. L. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci. Rep. 8, 9588 (2018).
pubmed: 29942049 pmcid: 6018631 doi: 10.1038/s41598-018-27903-2
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
pubmed: 23586463 pmcid: 3637064 doi: 10.1186/1471-2105-14-128
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).
pubmed: 33780170 pmcid: 8152575 doi: 10.1002/cpz1.90
Lepack, A. E. et al. Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior. Proc. Natl Acad. Sci. USA 113, 12562–12567 (2016).
pubmed: 27791098 pmcid: 5098673 doi: 10.1073/pnas.1608270113
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Shen, L. et al. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PLoS One 8, e65598 (2013).
pubmed: 23762400 pmcid: 3677880 doi: 10.1371/journal.pone.0065598
Bilimoria, P. M. & Bonni, A. Cultures of cerebellar granule neurons. CSH Protoc. 2008, pdb prot5107 (2008).
pubmed: 21356753
Kong, L. et al. A primary role of TET proteins in establishment and maintenance of de novo bivalency at CpG islands. Nucleic Acids Res. 44, 8682–8692 (2016).
pubmed: 27288448 pmcid: 5062965 doi: 10.1093/nar/gkw529

Auteurs

Amni Al-Kachak (A)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Giuseppina Di Salvo (G)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.

Sasha L Fulton (SL)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Jennifer C Chan (JC)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Lorna A Farrelly (LA)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Ashley E Lepack (AE)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Ryan M Bastle (RM)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Lingchun Kong (L)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Flurin Cathomas (F)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Emily L Newman (EL)

Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA.

Caroline Menard (C)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Aarthi Ramakrishnan (A)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Polina Safovich (P)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Yang Lyu (Y)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Herbert E Covington (HE)

Department of Psychology, Empire State College, State University of New York, Saratoga Springs, NY, 12866, USA.

Li Shen (L)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Kelly Gleason (K)

Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA.

Carol A Tamminga (CA)

Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA.

Scott J Russo (SJ)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Ian Maze (I)

Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. ian.maze@mssm.edu.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. ian.maze@mssm.edu.
Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. ian.maze@mssm.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH