Maximum in-vivo joint contact forces double during active compared to assisted motion in the glenohumeral joint and decline long-term due to rotator cuff pathologies.

Active and passive movement Glenohumeral joint In vivo joint contact forces Instrumented shoulder prosthesis Physical therapy Postoperative rehabilitation Rotator cuff Rotator cuff tear

Journal

Archives of orthopaedic and trauma surgery
ISSN: 1434-3916
Titre abrégé: Arch Orthop Trauma Surg
Pays: Germany
ID NLM: 9011043

Informations de publication

Date de publication:
07 Jun 2024
Historique:
received: 23 11 2023
accepted: 24 05 2024
medline: 7 6 2024
pubmed: 7 6 2024
entrez: 7 6 2024
Statut: aheadofprint

Résumé

Rehabilitation programs advocate early passive and assisted motion after rotator cuff repair to induce healing und maintaining range of motion while avoiding excessive strain on the repaired tendons. In-vivo glenohumeral joint contact forces reflect the compressive forces generated by the rotator muscles. In the present study, maximum in-vivo joint contact forces (FresMax) were determined to compare active and assisted execution of a single movement and the long-term development of joint compression forces. FresMax were measured in six patients who received instrumented, telemetric modified anatomical hemi endoprostheses of the shoulder joint between 2006 and 2008. Data were gathered 23 months postoperatively (2006-2010), were analysed and compared with measurements 133 months postoperatively. Additional imaging was obtained as x-rays and ultrasound examination. Data analysis was conducted by synchronizing video tapes and measured force curves. New imaging showed a rupture of the M. supraspinatus and progressive joint degeneration. FresMax nearly doubled during active compared to assisted execution of each of the four chosen movements. Over the course of 133 months post-surgery, the studied movements showed a decrease of active compression force, probably due to a ruptured supraspinatus, resulting in a lower active/assisted ratio. A long term follow up after eleven years, eight out of ten measured movements showed a decrease of FresMax. These results support current rehabilitation protocols recommending early passive and assisted motion to limit activation of the rotator muscles generating compressive forces. Following degeneration of the rotator cuff, active joint contact forces decrease over time.Level of evidence: III.

Identifiants

pubmed: 38847837
doi: 10.1007/s00402-024-05392-5
pii: 10.1007/s00402-024-05392-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Liem D, Brunner U (2017) S2e—Leitlinie Rotatorenmanschette. AWMF-Leitlinien-Register Nr 033(041):1–54
Edwards PK, Ebert JR, Littlewood C et al (2017) A systematic review of electromyography studies in normal shoulders to inform postoperative rehabilitation following rotator cuff repair. J Orthop Sports Phys Ther 47:931–944. https://doi.org/10.2519/jospt.2017.7271
doi: 10.2519/jospt.2017.7271 pubmed: 28704624
Sgroi TA, Cilenti M (2018) Rotator cuff repair: post-operative rehabilitation concepts. Curr Rev Musculoskelet Med 11:86–91. https://doi.org/10.1007/s12178-018-9462-7
doi: 10.1007/s12178-018-9462-7 pubmed: 29399735 pmcid: 5825343
Denard PJ, Lädermann A (2016) Immediate versus delayed passive range of motion following total shoulder arthroplasty. J Shoulder Elbow Surg 25:1918–1924. https://doi.org/10.1016/j.jse.2016.07.032
doi: 10.1016/j.jse.2016.07.032 pubmed: 27727055
Beletsky A, Cancienne JM, Manderle BJ et al (2020) A comparison of physical therapy protocols between open latarjet coracoid transfer and arthroscopic bankart repair. Sports Health 12:124–131. https://doi.org/10.1177/1941738119887396
doi: 10.1177/1941738119887396 pubmed: 31916920 pmcid: 7040951
Choi S, Seo KB, Shim S et al (2019) Early and delayed postoperative rehabilitation after arthroscopic rotator cuff repair: a comparative study of clinical outcomes. Clin Shoulder Elb 22:190–194. https://doi.org/10.5397/cise.2019.22.4.190
doi: 10.5397/cise.2019.22.4.190 pubmed: 33330218 pmcid: 7714306
Edwards PK, Ebert JR, Littlewood C et al (2020) Effectiveness of formal physical therapy following total shoulder arthroplasty: a systematic review. Shoulder Elbow 12:136–143. https://doi.org/10.1177/1758573218812038
doi: 10.1177/1758573218812038 pubmed: 32313563
Ghandour TM, Ibrahim A, Abdelrahman AA et al (2019) Does the type of shoulder brace affect postoperative pain and clinical outcome after arthroscopic rotator cuff repair? Arthroscopy 35:1016–1023. https://doi.org/10.1016/j.arthro.2018.10.137
doi: 10.1016/j.arthro.2018.10.137 pubmed: 30857904
Kirsch JM, Namdari S (2020) Rehabilitation after anatomic and reverse total shoulder arthroplasty: a critical analysis review. JBJS Rev 8:e0129. https://doi.org/10.2106/JBJS.RVW.19.00129
doi: 10.2106/JBJS.RVW.19.00129 pubmed: 32224631
Kluczynski MA, Isenburg MM, Marzo JM et al (2016) Does early versus delayed active range of motion affect rotator cuff healing after surgical repair? A systematic review and meta-analysis. Am J Sports Med 44:785–791. https://doi.org/10.1177/0363546515582032
doi: 10.1177/0363546515582032 pubmed: 25943112
Kjær BH, Magnusson SP, Warming S et al (2018) Progressive early passive and active exercise therapy after surgical rotator cuff repair—study protocol for a randomized controlled trial (the CUT-N-MOVE trial). Trials 19:470. https://doi.org/10.1186/s13063-018-2839-5
doi: 10.1186/s13063-018-2839-5 pubmed: 30176943 pmcid: 6122575
Tirefort J, Schwitzguebel AJ, Collin P et al (2019) Postoperative mobilization after superior rotator cuff repair: sling versus no sling: a randomized prospective study. J Bone Joint Surg Am 101:494–503. https://doi.org/10.2106/JBJS.18.00773
doi: 10.2106/JBJS.18.00773 pubmed: 30893230
Gohlke F (2000) Biomechanik der Schulter. Orthopade 2000:834–844
doi: 10.1007/s001320050534
Halder A, Itoi E, An K (2003) Anatomy and biomechanics of the shoulder. In: Imhoff A, Ticker J, Fu F (eds) Atlas of shoulder arthroscopy. CRC Press, pp 11–25
Bouaicha S, Slankamenac K, Moor BK et al (2016) Cross-sectional area of the rotator cuff muscles in MRI—is there evidence for a biomechanical balanced shoulder? PLoS ONE 11:e0157946. https://doi.org/10.1371/journal.pone.0157946
doi: 10.1371/journal.pone.0157946 pubmed: 27336464 pmcid: 4918939
Yanagawa T, Goodwin C, Shelburne K et al (2008) Contributions of the Individual muscles of the shoulder to GH joint Stability during abduction—Yanagawa. J Biomech Eng 021024-1–021024-9
Labriola JE, Lee TQ, Debski RE et al (2005) Stability and instability of the glenohumeral joint: the role of shoulder muscles. J Shoulder Elbow Surg 14:32S-38S. https://doi.org/10.1016/j.jse.2004.09.014
doi: 10.1016/j.jse.2004.09.014 pubmed: 15726085
Bergmann G, Graichen F, Bender A et al (2007) In vivo glenohumeral contact forces–measurements in the first patient 7 months postoperatively. J Biomech 40:2139–2149. https://doi.org/10.1016/j.jbiomech.2006.10.037
doi: 10.1016/j.jbiomech.2006.10.037 pubmed: 17169364
Bergmann G, Graichen F, Bender A et al (2011) In vivo gleno-humeral joint loads during forward flexion and abduction. J Biomech 44:1543–1552. https://doi.org/10.1016/j.jbiomech.2011.02.142
doi: 10.1016/j.jbiomech.2011.02.142 pubmed: 21481879
Graichen F, Arnold R, Rohlmann A et al (2007) Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Trans Biomed Eng 54:253–261. https://doi.org/10.1109/TBME.2006.886857
doi: 10.1109/TBME.2006.886857 pubmed: 17278582
Westerhoff P, Graichen F, Bender A et al (2009) In vivo measurement of shoulder joint loads during activities of daily living. J Biomech 42:1840–1849. https://doi.org/10.1016/j.jbiomech.2009.05.035
doi: 10.1016/j.jbiomech.2009.05.035 pubmed: 19643418
Westerhoff P, Graichen F, Bender A et al (2011) Measurement of shoulder joint loads during wheelchair propulsion measured in vivo. Clin Biomech (Bristol, Avon) 26:982–989. https://doi.org/10.1016/j.clinbiomech.2011.05.017
doi: 10.1016/j.clinbiomech.2011.05.017 pubmed: 21719168
Westerhoff P, Graichen F, Bender A et al (2012) In vivo measurement of shoulder joint loads during walking with crutches. Clin Biomech (Bristol, Avon) 27:711–718. https://doi.org/10.1016/j.clinbiomech.2012.03.004
doi: 10.1016/j.clinbiomech.2012.03.004 pubmed: 22633130
Westerhoff P, Graichen F, Bender A et al (2009) An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint. Med Eng Phys 31:207–213. https://doi.org/10.1016/j.medengphy.2008.07.011
doi: 10.1016/j.medengphy.2008.07.011 pubmed: 18789749
Bergmann G, Graichen F, Siraky J et al (1988) Multichannel Strain Gauge Telemetry for orthopedic implants. J Biomech 1988:169–176. https://doi.org/10.1016/0021-9290(88)90009-7
doi: 10.1016/0021-9290(88)90009-7
Deutsche Vereinigung für Schulter und Ellenbogenchirurgie (DVSE) e.V. (2012) Untersuchungstechniken des Schultergelenks. Obere Extremität 7:1–67. https://doi.org/10.1007/s11678-012-0165-1
Brolin TJ, Updegrove GF, Horneff JG (2017) Classifications in brief: hamada classification of massive rotator cuff tears. Clin Orthop Relat Res 475:2819–2823. https://doi.org/10.1007/s11999-017-5340-7
doi: 10.1007/s11999-017-5340-7 pubmed: 28378277 pmcid: 5638727
Hamada K, Yamanaka K, Uchiyama Y et al (2011) A radiographic classification of massive rotator cuff tear arthritis. Clin Orthop Relat Res 469:2452–2460. https://doi.org/10.1007/s11999-011-1896-9
doi: 10.1007/s11999-011-1896-9 pubmed: 21503787 pmcid: 3148384
Hien N (2016) Refresherkurs Sonographie der Bewegungsorgane: Schultersonographie, Standardebenen, Untersuchungsgang und Funktionstests. OUP:250–256
Okoroha KR, Fidai MS, Tramer JS et al (2019) Diagnostic accuracy of ultrasound for rotator cuff tears. Ultrasonography 38:215–220. https://doi.org/10.14366/usg.18058
doi: 10.14366/usg.18058 pubmed: 30744304
Knesek A, Brunfeldt A, Korenczuk C et al (2016) Patterns of strain and the determination of the safe arc of motion after subscapularis repair—a biomechanical study. J Orthop Res 2015:518–524
doi: 10.1002/jor.23045
Murphy CA, McDermott WJ, Petersen RK et al (2013) Electromyographic analysis of the rotator cuff in postoperative shoulder patients during passive rehabilitation exercises. J Shoulder Elbow Surg 22:102–107. https://doi.org/10.1016/j.jse.2012.01.021
doi: 10.1016/j.jse.2012.01.021 pubmed: 22560228
Gueniche J, Bierry G (2018) Rotator cuff muscles fatty infiltration increases with age: retrospective review of 210 patients with intact cuff on computed tomography arthrography
Meyer DC, Gerber C, von Rechenberg B et al (2011) Amplitude and strength of muscle contraction are reduced in experimental tears of the rotator cuff. Am J Sports Med 39:1456–1461. https://doi.org/10.1177/0363546510396305
doi: 10.1177/0363546510396305 pubmed: 21350068
Perry SM, Getz CL, Soslowsky LJ (2009) After rotator cuff tears, the remaining (intact) tendons are mechanically altered. J Shoulder Elbow Surg 18:52–57. https://doi.org/10.1016/j.jse.2008.07.003
doi: 10.1016/j.jse.2008.07.003 pubmed: 19095175 pmcid: 2745652
Chen Z, Fan X, Gao Y et al (2021) Effect of rotator cuff deficiencies on muscle forces and glenohumeral contact force after anatomic total shoulder arthroplasty using musculoskeletal multibody dynamics simulation. Front Bioeng Biotechnol 9:691450. https://doi.org/10.3389/fbioe.2021.691450
doi: 10.3389/fbioe.2021.691450 pubmed: 34291041 pmcid: 8287529
Wieser K, Joshy J, Filli L et al (2019) Changes of supraspinatus muscle volume and fat fraction after successful or failed arthroscopic rotator cuff repair. Am J Sports Med 47:3080–3088. https://doi.org/10.1177/0363546519876289
doi: 10.1177/0363546519876289 pubmed: 31536372
Ma R, Brimmo OA, Li X et al (2017) Current concepts in rehabilitation for traumatic anterior shoulder instability. Curr Rev Musculoskelet Med 10:499–506. https://doi.org/10.1007/s12178-017-9449-9
doi: 10.1007/s12178-017-9449-9 pubmed: 29038953 pmcid: 5685970

Auteurs

Lea Harti (L)

Sonnenhof Spital Bern, Buchserstrasse 30, 3006, Bern, Switzerland. lea.harti@yahoo.com.

Daniel Schrednitzki (D)

Sana Kliniken Sommerfeld, Waldhausstrasse 44, 16766, Kremmen, Germany.

Philipp Damm (P)

Julius-Wolff-Institute for Biomechanics and Musculoskeletal Regeneration, Charité Virchow Campus, Augustenburger Pl. 1, 13353, Berlin, Germany.

Andreas Halder (A)

Sana Kliniken Sommerfeld, Waldhausstrasse 44, 16766, Kremmen, Germany.

Classifications MeSH