Beneficial effects of hepatic cyclooxygenase-2 expression against cholestatic injury after common bile duct ligation in mice.
BDL
COX‐2
PGE2
bile acids
cholestasis
liver
Journal
Liver international : official journal of the International Association for the Study of the Liver
ISSN: 1478-3231
Titre abrégé: Liver Int
Pays: United States
ID NLM: 101160857
Informations de publication
Date de publication:
07 Jun 2024
07 Jun 2024
Historique:
revised:
01
05
2024
received:
02
10
2023
accepted:
23
05
2024
medline:
7
6
2024
pubmed:
7
6
2024
entrez:
7
6
2024
Statut:
aheadofprint
Résumé
Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis. We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury. After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.
Sections du résumé
BACKGROUND AND AIMS
OBJECTIVE
Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis.
METHODS
METHODS
We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury.
RESULTS
RESULTS
After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E
CONCLUSIONS
CONCLUSIONS
Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/10.13039/501100011033
Organisme : Agencia Nacional de Promoción Científica y Tecnológica
Informations de copyright
© 2024 The Author(s). Liver International published by John Wiley & Sons Ltd.
Références
Santamaría E, Rodríguez‐Ortigosa CM, Uriarte I, et al. The epidermal growth factor receptor ligand Amphiregulin protects from Cholestatic liver injury and regulates bile acids synthesis. Hepatology. 2019;69:1632‐1647. doi:10.1002/hep.30348
Georgiev P, Jochum W, Heinrich S, et al. Characterization of time‐related changes after experimental bile duct ligation. Br J Surg. 2008;95:646‐656. doi:10.1002/BJS.6050
European Association for the Study of the Liver. EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51:237‐267. doi:10.1016/j.jhep.2009.04.009
Rodríguez‐Garay EA. Cholestasis: human disease and experimental animal models. Ann Hepatol. 2003;2:150‐158. doi:10.1016/S1665-2681(19)32126-X
Chiang JYL. Bile acid metabolism and signaling. Compr Physiol. 2013;3:1191‐1212. doi:10.1002/cphy.c120023
Guo GL, Chiang JYL. Is CYP2C70 the key to new mouse models to understand bile acids in humans? J Lipid Res. 2020;61:269‐271. doi:10.1194/JLR.C120000621
Zhang Y, Hong JY, Rockwell CE, Copple BL, Jaeschke H, Klaassen CD. Effect of bile duct ligation on bile acid composition in mouse serum and liver. Liver Int. 2012;32:58‐69. doi:10.1111/J.1478-3231.2011.02662.X
Weng Z, Liu X, Hu J, et al. Protective effect of dehydroandrographolide on obstructive cholestasis in bile duct‐ligated mice. Oncotarget. 2017;8:87903‐87913. doi:10.18632/oncotarget.21233
Casado M, Mollá B, Roy R, et al. Protection against Fas‐induced liver apoptosis in transgenic mice expressing cyclooxygenase 2 in hepatocytes. Hepatology. 2007;45:631‐638. doi:10.1002/hep.21556
Francés DE, Ingaramo PI, Mayoral R, et al. Cyclooxygenase‐2 over‐expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem. 2013;114:669‐680. doi:10.1002/jcb.24409
Francés DE, Motiño O, Agrá N, et al. Hepatic cyclooxygenase‐2 expression protects against diet‐induced steatosis, obesity and insulin resistance. Diabetes. 2015;64:1522‐1531. doi:10.2337/db14-0979
Motiño O, Agra N, Brea Contreras R, et al. Cyclooxygenase‐2 expression in hepatocytes attenuates non‐alcoholic steatohepatitis and liver fibrosis in mice. Biochim Biophys Acta. 2016;1862:1710‐1723. doi:10.1016/j.bbadis.2016.06.009
Brea R, Motiño O, Francés D, et al. PGE2 induces apoptosis of hepatic stellate cells and attenuates liver fibrosis in mice by downregulating miR‐23a‐5p and miR‐28a‐5p. Biochim Biophys Acta Mol Basis Dis. 2018;1864:325‐337. doi:10.1016/j.bbadis.2017.11.001
Motiño O, Francés DE, Casanova N, et al. Protective role of hepatocyte cyclooxygenase‐2 expression against liver ischemia‐reperfusion injury in mice. Hepatology. 2019;70:650‐665. doi:10.1002/hep.30241
Fuertes‐Agudo M, Luque‐Tévar M, Cucarella C, et al. COX‐2 expression in hepatocytes improves mitochondrial function after hepatic ischemia‐reperfusion injury. Antioxidants. 2022;11:1724. doi:10.3390/antiox11091724
Kim SM, Park KC, Kim HG, Han SJ. Effect of selective cyclooxygenase‐2 inhibitor meloxicam on liver fibrosis in rats with ligated common bile ducts. Hepatol Res. 2008;38:800‐809. doi:10.1111/j.1872-034X.2008.00339.x
Chamouard P, Walter P, Baumann R, Poupon R. Prolonged cholestasis associated with short‐term use of celecoxib. Gastroenterol Clin Biol. 2005;29:1286‐1288. doi:10.1016/s0399-8320(05)82223-7
Ying F, Cai Y, Wong HK, et al. EP4 emerges as a novel regulator of bile acid synthesis and its activation protects against hypercholesterolemia. Biochimica et Biophysica Acta (BBA) ‐ molecular and cell biology of. Lipids. 2018;1863:1029‐1040. doi:10.1016/j.bbalip.2018.06.003
Cyphert HA, Ge X, Kohan AB, Salati LM, Zhang Y, Hillgartner FB. Activation of the Farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem. 2012;287:25123‐25138. doi:10.1074/jbc.M112.375907
Yoon J‐H, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase‐2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology. 2002;122:985‐993. doi:10.1053/gast.2002.32410
Miyaki A, Yang P, Tai H‐H, Subbaramaiah K, Dannenberg AJ. Bile acids inhibit NAD+‐dependent 15‐hydroxyprostaglandin dehydrogenase transcription in colonocytes. Am J Physiol Gastrointest Liver Physiol. 2009;297:G559‐G566. doi:10.1152/ajpgi.00133.2009
Maillette de Buy Wenniger L, Beuers U. Bile salts and cholestasis. Dig Liver Dis. 2010;42:409‐418. doi:10.1016/j.dld.2010.03.015
Kwak BJ, Choi HJ, Kim O‐H, et al. The role of Phospho‐c‐Jun N‐terminal kinase expression on hepatocyte necrosis and autophagy in the Cholestatic liver. J Surg Res. 2019;241:254‐263. doi:10.1016/J.JSS.2019.03.034
Mayoral R, Mollá B, Flores JM, Boscá L, Casado M, Martín‐Sanz P. Constitutive expression of cyclo‐oxygenase 2 transgene in hepatocytes protects against liver injury. Biochem J. 2008;416:337‐346. doi:10.1042/BJ20081224
Tag C, Weiskirchen S, Hittatiya K, Tacke F, Tolba R, Weiskirchen R. Induction of experimental obstructive cholestasis in mice. Lab Anim. 2015;49:70‐80. doi:10.1177/0023677214567748
Ohashi N, Kohno T. Analgesic effect of acetaminophen: a review of known and novel mechanisms of action. Front Pharmacol. 2020;11:580289. doi:10.3389/fphar.2020.580289
Casado M, Callejas NA, Rodrigo J, et al. Contribution of cyclooxygenase 2 to liver regeneration after partial hepatectomy. FASEB J. 2001;15:2016‐2018. doi:10.1096/fj.01-0158fje
García‐Cañaveras JC, Donato MT, Castell JV, Lahoz A. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC‐MRM‐MS‐validated method. J Lipid Res. 2012;53:2231‐2241. doi:10.1194/JLR.D028803
Motiño O, Francés DE, Mayoral R, et al. Regulation of MicroRNA 183 by cyclooxygenase 2 in liver is DEAD‐box helicase p68 (DDX5) dependent: role in insulin signaling. Mol Cell Biol. 2015;35:2554‐2567. doi:10.1128/MCB.00198-15
Ahmadi A, Niknahad H, Li H, et al. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid‐induced hepatic and renal toxicity. Toxicol Lett. 2021;349:12‐29. doi:10.1016/J.TOXLET.2021.05.012
Huang YH, Yang YL, Huang FC, et al. MicroRNA‐29a mitigation of endoplasmic reticulum and autophagy aberrance counteracts in obstructive jaundice‐induced fibrosis in mice. Exp Biol Med. 2018;243:13‐21. doi:10.1177/1535370217741500
Wang M, Chen M, Zheng G, et al. Transcriptional activation by growth hormone of HNF‐6‐regulated hepatic genes, a potential mechanism for improved liver repair during biliary injury in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295:357‐366. doi:10.1152/AJPGI.00581.2007
Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ, Roma MG. Oxidative stress and localization status of hepatocellular transporters: impact on bile secretion and role of signaling pathways. Antioxid Redox Signal. 2021;35:808‐831. doi:10.1089/ars.2021.0021
Sokol R, Devereaux M, Khandwala R. Effect of dietary lipid and vitamin E on mitochondrial lipid peroxidation and hepatic injury in the bile duct‐ligated rat. J Lipid Res. 1991;32:1349‐1357. doi:10.1016/S0022-2275(20)41965-0
Parola M, Leonarduzzi G, Robino G, Albano E, Poli G, Dianzani MU. On the role of lipid peroxidation in the pathogenesis of liver damage induced by long‐standing cholestasis. Free Radic Biol Med. 1996;20:351‐359. doi:10.1016/0891-5849(96)02055-2
Gu L, Tao X, Xu Y, et al. Dioscin alleviates BDL‐ and DMN‐induced hepatic fibrosis via Sirt1/Nrf2‐mediated inhibition of p38 MAPK pathway. Toxicol Appl Pharmacol. 2016;292:19‐29. doi:10.1016/J.TAAP.2015.12.024
Zhao J, Ran M, Yang T, et al. Bicyclol alleviates signs of BDL‐induced cholestasis by regulating bile acids and autophagy‐mediated HMGB1/p62/Nrf2 pathway. Front Pharmacol. 2021;12:686502. doi:10.3389/fphar.2021.686502
Weerachayaphorn J, Mennone A, Soroka CJ, et al. Nuclear factor‐E2‐related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine. American journal of physiology‐gastrointestinal and liver. Phys Ther. 2012;302:G925‐G936. doi:10.1152/ajpgi.00263.2011
Park JH, Kwak BJ, Choi HJ, et al. PGC‐1α is downregulated in a mouse model of obstructive cholestasis but not in a model of liver fibrosis. FEBS Open Bio. 2021;11:61‐74. doi:10.1002/2211-5463.12961
Miyoshi H, Rust C, Roberts PJ, Burgart LJ, Gores GJ. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology. 1999;117:669‐677. doi:10.1016/S0016-5085(99)70461-0
Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase‐2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib‐induced apoptosis. Hepatology. 2003;38:756‐768. doi:10.1053/jhep.2003.50380
Vennemann A, Gerstner A, Kern N, et al. PTGS‐2‐PTGER2/4 signaling pathway partially protects from diabetogenic toxicity of streptozotocin in mice. Diabetes. 2012;61:1879‐1887. doi:10.2337/db11-1396
Straniero S, Laskar A, Savva C, Härdfeldt J, Angelin B, Rudling M. Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J Lipid Res. 2020;61:480‐491. doi:10.1194/JLR.RA119000307
Tiwari S, Yang J, Morisseau C, Durbin‐Johnson B, Hammock BD, Gomes AV. Ibuprofen alters epoxide hydrolase activity and epoxy‐oxylipin metabolites associated with different metabolic pathways in murine livers. Sci Rep. 2021;11:7042. doi:10.1038/s41598-021-86284-1
Chen K, Li JJ, Li SN, et al. 15‐Deoxy‐Δ12,14‐prostaglandin J2 alleviates hepatic ischemia‐reperfusion injury in mice via inducing antioxidant response and inhibiting apoptosis and autophagy. Acta Pharmacol Sin. 2017;38:672‐687. doi:10.1038/aps.2016.108
Zhang Y, Desai A, Yang SY, et al. Inhibition of the prostaglandin‐degrading enzyme 15‐PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340. doi:10.1126/science.aaa2340
Núñez O, Fernández‐Martínez A, Majano PL, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut. 2004;53:1665‐1672. doi:10.1136/gut.2003.038364
Osawa Y, Hannun YA, Proia RL, Brenner DA. Roles of AKT and sphingosine kinase in the antiapoptotic effects of bile duct ligation in mouse liver. Hepatology. 2005;42:1320‐1328. doi:10.1002/hep.20967
Georgiev P, Navarini AA, Eloranta JJ, et al. Cholestasis protects the liver from ischaemic injury and post‐ischaemic inflammation in the mouse. Gut. 2007;56:121‐128. doi:10.1136/gut.2006.097170
Luan X, Chen P, Li Y, et al. TNF‐α/IL‐1β‐licensed hADSCs alleviate cholestatic liver injury and fibrosis in mice via COX‐2/PGE2 pathway. Stem Cell Res Ther. 2023;14:100. doi:10.1186/s13287-023-03342-3