Restricting the level of the proteins essential for the regulation of the initiation step of replication extends the chronological lifespan and reproductive potential in budding yeast.

Aging Cell cycle Lifespan Replication

Journal

Biogerontology
ISSN: 1573-6768
Titre abrégé: Biogerontology
Pays: Netherlands
ID NLM: 100930043

Informations de publication

Date de publication:
06 Jun 2024
Historique:
received: 22 03 2024
accepted: 29 05 2024
medline: 7 6 2024
pubmed: 7 6 2024
entrez: 6 6 2024
Statut: aheadofprint

Résumé

Aging is defined as a progressive decline in physiological integrity, leading to impaired biological function, including fertility, and rising vulnerability to death. Disorders of DNA replication often lead to replication stress and are identified as factors influencing the aging rate. In this study, we aimed to reveal how the cells that lost strict control of the formation of crucial for replication initiation a pre-initiation complex impact the cells' physiology and aging. As strains with the lower pre-IC control (lowPICC) we used, Saccharomyces cerevisiae heterozygous strains having only one functional copy of genes, encoding essential replication proteins such as Cdc6, Dbf4, Sld3, Sld7, Sld2, and Mcm10. The lowPICC strains exhibited a significant reduction in the respective genes' mRNA levels, causing cell cycle aberrations and doubling time extensions. Additionally, the reduced expression of the lowPICC genes led to an aberrant DNA damage response, affected cellular and mitochondrial DNA content, extended the lifespan of post-mitotic cells, and increased the yeast's reproductive potential. Importantly, we also demonstrated a strong negative correlation between the content of cellular macromolecules (RNA, proteins, lipids, polysaccharides) and aging. The data presented here will likely contribute to the future development of therapies for treating various human diseases.

Identifiants

pubmed: 38844751
doi: 10.1007/s10522-024-10113-x
pii: 10.1007/s10522-024-10113-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Antoniuk-Majchrzak J, Enkhbaatar T, Dlugajczyk A, Kaminska J, Skoneczny M, Klionsky DJ, Skoneczna A (2023) Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO. Biochim Biophys Acta Mol Cell Res 1870:119526
pubmed: 37364618 doi: 10.1016/j.bbamcr.2023.119526
Beach A, Richard VR, Leonov A, Burstein MT, Bourque SD, Koupaki O, Juneau M, Feldman R, Iouk T, Titorenko VI (2013) Mitochondrial membrane lipidome defines yeast longevity. Aging 5:551–574
pubmed: 23924582 pmcid: 3765583 doi: 10.18632/aging.100578
Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203:1027–1067
pubmed: 27384026 pmcid: 4937469 doi: 10.1534/genetics.115.186452
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu BT, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A (2019) ilastik: interactive machine learning for (bio) image analysis. Nat Methods 16:1226–1232
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Borkiewicz L, Molon M, Molestak E, Grela P, Horbowicz-Drozdzal P, Wawiorka L, Tchorzewski M (2019) Functional analysis of the ribosomal uL6 protein of Saccharomyces cerevisiae. Cells 8:718
pubmed: 31337056 pmcid: 6678285 doi: 10.3390/cells8070718
Chee WY, Kurahashi Y, Kim J, Miura K, Okuzaki D, Ishitani T, Kajiwara K, Nada S, Okano H, Okada M (2021) β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells. Commun Biol 4:357
pubmed: 33742113 pmcid: 7979689 doi: 10.1038/s42003-021-01879-8
Costa A, Diffley JFX (2022) The initiation of eukaryotic DNA replication. Annu Rev Biochem 91:107–131
pubmed: 35320688 doi: 10.1146/annurev-biochem-072321-110228
Coster G, Diffley JFX (2017) Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science 357:314–318
pubmed: 28729513 pmcid: 5608077 doi: 10.1126/science.aan0063
Czachor J, Milek M, Galiniak S, Stepien K, Dzugan M, Molon M (2020) Coffee extends yeast chronological lifespan through antioxidant properties. Int J Mol Sci 21:9510
pubmed: 33327536 pmcid: 7765085 doi: 10.3390/ijms21249510
de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157:1515–1526
pubmed: 24949965 pmcid: 4254402 doi: 10.1016/j.cell.2014.05.031
Douglas ME, Diffley JFX (2016) Recruitment of Mcm10 to sites of replication initiation requires direct binding to the minichromosome maintenance (MCM) complex. J Biol Chem 291:5879–5888
pubmed: 26719337 doi: 10.1074/jbc.M115.707802
Douglas ME, Ali FA, Costa A, Diffley JFX (2018) The mechanism of eukaryotic CMG helicase activation. Nature 555:265–268
pubmed: 29489749 pmcid: 6847044 doi: 10.1038/nature25787
Early A, Drury LS, Diffley JFX (2004) Mechanisms involved in regulating DNA replication origins during the cell cycle and in response to DNA damage. Philos Trans R Soc B Biol Sci 359:31–38
doi: 10.1098/rstb.2003.1362
Eisenberg T, Büttner S (2014) Lipids and cell death in yeast. FEMS Yeast Res 14:179–197
pubmed: 24119111 doi: 10.1111/1567-1364.12105
Enkhbaatar T, Skoneczny M, Stepien K, Molon M, Skoneczna A (2023) Live while the DNA lasts. The role of autophagy in DNA loss and survival of diploid yeast cells during chronological aging. Aging 15:9967–9992
doi: 10.18632/aging.205102
Eshaghi M, Karuturi RKM, Li JT, Chu ZQ, Liu ET, Liu JH (2007) Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-Phase in S. pombe. Plos One 2:e722
pubmed: 17684567 pmcid: 1934932 doi: 10.1371/journal.pone.0000722
Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81
pubmed: 12882320 doi: 10.1046/j.1474-9728.2003.00033.x
Falcone C, Mazzoni C (2018) RNA stability and metabolism in regulated cell death, aging and diseases. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy050
doi: 10.1093/femsyr/foy050 pubmed: 29986027
Flor AC, Wolfgeher D, Wu D, Kron SJ (2017) A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov 3:1–12
doi: 10.1038/cddiscovery.2017.75
Frenk S, Houseley J (2018) Gene expression hallmarks of cellular ageing. Biogerontology 19:547–566
pubmed: 29492790 pmcid: 6223719 doi: 10.1007/s10522-018-9750-z
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206
pubmed: 15187181 pmcid: 419917 doi: 10.1128/MMBR.68.2.187-206.2004
Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146:80–91
pubmed: 21729781 pmcid: 3204357 doi: 10.1016/j.cell.2011.06.012
Hills SA, Diffley JFX (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24:R435–R444
pubmed: 24845676 doi: 10.1016/j.cub.2014.04.012
Hyrien O, Goldar A (2010) Mathematical modelling of eukaryotic DNA replication. Chromosome Res 18:147–161
pubmed: 20205354 doi: 10.1007/s10577-009-9092-4
Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258
pubmed: 20122406 pmcid: 6396293 doi: 10.1016/j.molcel.2009.12.030
Jedrychowska M, Denkiewicz-Kruk M, Alabrudzinska M, Skoneczna A, Jonczyk P, Dmowski M, Fijalkowska IJ (2019) Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism. Plos Genet 15:e1008494
pubmed: 31815930 pmcid: 6922473 doi: 10.1371/journal.pgen.1008494
Kamimura Y, Tak YS, Sugino A, Araki H (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J 20:2097–2107
pubmed: 11296242 pmcid: 125422 doi: 10.1093/emboj/20.8.2097
Kotsantis P, Petermann E, Boulton SJ (2018) Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov 8:537–555
pubmed: 29653955 pmcid: 5935233 doi: 10.1158/2159-8290.CD-17-1461
Krol K, Antoniuk-Majchrzak J, Skoneczny M, Sienko M, Jendrysek J, Rumienczyk I, Halas A, Kurlandzka A, Skoneczna A (2018) Lack of G1/S control destabilizes the yeast genome via replication stress-induced DSBs and illegitimate recombination. J Cell Sci. https://doi.org/10.1242/jcs.226480
doi: 10.1242/jcs.226480 pubmed: 30463853
Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–3534
pubmed: 27412086 doi: 10.1093/bioinformatics/btw413
Legouras I, Xouri G, Dimopoulos S, Lygeros J, Lygerou Z (2006) DNA replication in the fission yeast: robustness in the face of uncertainty. Yeast 23:951–962
pubmed: 17072888 doi: 10.1002/yea.1416
Lewis JS, Gross MH, Sousa J, Henrikus SS, Greiwe JF, Nans A, Diffley JFX, Costa A (2022) Mechanism of replication origin melting nucleated by CMG helicase assembly. Nature 606:1007–1014
pubmed: 35705812 pmcid: 9242855 doi: 10.1038/s41586-022-04829-4
Li NN, Lam WH, Zhai YL, Cheng JX, Cheng EC, Zhao YQ, Gao N, Tye BK (2018) Structure of the origin recognition complex bound to DNA replication origin. Nature 559:217–222
pubmed: 29973722 doi: 10.1038/s41586-018-0293-x
Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DMA repair and recombination centers during S phase. Proc Natl Acad Sci U S A 98:8276–8282
pubmed: 11459964 pmcid: 37432 doi: 10.1073/pnas.121006298
Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae - mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280
pubmed: 8647826 doi: 10.1074/jbc.271.21.12275
Lynch KL, Alvino GM, Kwan EX, Brewer BJ, Raghuraman MK (2019) The effects of manipulating levels of replication initiation factors on origin firing efficiency in yeast. PLoS Genet. https://doi.org/10.1371/journal.pgen.1008430
doi: 10.1371/journal.pgen.1008430 pubmed: 31584938 pmcid: 6795477
Macheret M, Halazonetis TD (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10:425–448
pubmed: 25621662 doi: 10.1146/annurev-pathol-012414-040424
Mantiero D, Mackenzie A, Donaldson A, Zegerman P (2011) Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30:4805–4814
pubmed: 22081107 pmcid: 3243606 doi: 10.1038/emboj.2011.404
McGuffee SR, Smith DJ, Whitehouse I (2013) Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol Cell 50:123–135
pubmed: 23562327 pmcid: 3628276 doi: 10.1016/j.molcel.2013.03.004
Minois N, Frajnt M, Wilson C, Vaupel JW (2005) Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102:402–406
pubmed: 15625107 doi: 10.1073/pnas.0408332102
Miyazawa-Onami M, Araki H, Tanaka S (2017) Pre-initiation complex assembly functions as a molecular switch that splits the Mcm2-7 double hexamer. EMBO Rep 18:1752–1761
pubmed: 28818838 pmcid: 5623835 doi: 10.15252/embr.201744206
Molon M, Zebrowski J (2017) Phylogenetic relationship and Fourier-transform infrared spectroscopy-derived lipid determinants of lifespan parameters in the Saccharomyces cerevisiae yeast. FEMS Yeast Res. https://doi.org/10.1093/femsyr/fox031
doi: 10.1093/femsyr/fox031 pubmed: 28520879
Molon M, Szajwaj M, Tchorzewski M, Skoczowski A, Niewiadomska E, Zadrag-Tecza R (2016) The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast. Age 38:11
pubmed: 26783001 pmcid: 5005888 doi: 10.1007/s11357-015-9868-8
Molon M, Woznicka O, Zebrowski J (2018) Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology 19:67–79
pubmed: 29189912 doi: 10.1007/s10522-017-9740-6
Molon M, Molestak E, Kula-Maximenko M, Grela P, Tchorzewski M (2020) Ribosomal protein uL11 as a regulator of metabolic circuits related to aging and cell cycle. Cells 9:1745
pubmed: 32708309 pmcid: 7409069 doi: 10.3390/cells9071745
Molon M, Zaciura M, Wojdyla D, Molestak E (2023) Increasing the number of ribosomal uL6 mRNA copies accelerates aging of the budding yeast. Mol Biol Rep 50:2933–2941
pubmed: 36576675 doi: 10.1007/s11033-022-08187-2
Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol epsilon, and GINS in budding yeast. Genes Dev 24:602–612
pubmed: 20231317 pmcid: 2841337 doi: 10.1101/gad.1883410
Nagai S, Dubrana K, Tsai-Pflugfelder M, Davidson MB, Roberts TM, Brown GW, Varela E, Hediger F, Gasser SM, Krogan NJ (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322:597–602
pubmed: 18948542 pmcid: 3518492 doi: 10.1126/science.1162790
Ngo K, Epum EA, Friedman KL (2020) Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast. Curr Genet 66:917–926
pubmed: 32399607 pmcid: 7492393 doi: 10.1007/s00294-020-01081-z
Puddu F, Herzog M, Selivanova A, Wang SY, Zhu J, Klein-Lavi S, Gordon M, Meirman R, Millan-Zambrano G, Ayestaran I, Salguero I, Sharan R, Li R, Kupiec M, Jackson SP (2019) Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature 573:416–420
pubmed: 31511699 pmcid: 6774800 doi: 10.1038/s41586-019-1549-9
Randell JCW, Bowers JL, Rodriguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21:29–39
pubmed: 16387651 doi: 10.1016/j.molcel.2005.11.023
Rao H, Stillman B (1995) The origin recognition complex interacts with a bipartite DNA-binding site within yeast replicators. Proc Natl Acad Sci U S A 92:2224–2228
pubmed: 7892251 pmcid: 42456 doi: 10.1073/pnas.92.6.2224
Rattan SIS (2024) Seven knowledge gaps in modern biogerontology. Biogerontology 25:1–8
pubmed: 38206540 doi: 10.1007/s10522-023-10089-0
Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730
pubmed: 19896182 pmcid: 2804858 doi: 10.1016/j.cell.2009.10.015
Saadat YR, Khosroushahi AY, Gargari BP (2021) Yeast exopolysaccharides and their physiological functions. Folia Microbiol 66:171–182
doi: 10.1007/s12223-021-00856-2
Sampaio-Marques B, Ludovico P (2018) Linking cellular proteostasis to yeast longevity. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy043
doi: 10.1093/femsyr/foy043 pubmed: 29800380
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682
pubmed: 22743772 doi: 10.1038/nmeth.2019
Sheu YJ, Kinney JB, Stillman B (2016) Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression. Genome Res 26:315–330
pubmed: 26733669 pmcid: 4772014 doi: 10.1101/gr.195248.115
Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133:292–302
pubmed: 18423200 pmcid: 2749658 doi: 10.1016/j.cell.2008.02.037
Steffen KK, McCormick MA, Pham KM, MacKay VL, Delaney JR, Murakami CJ, Kaeberlein M, Kennedy BK (2012) Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics 191:107–118
pubmed: 22377630 pmcid: 3338253 doi: 10.1534/genetics.111.136549
Stepien K, Wojdyla D, Nowak K, Molon M (2020) Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. Biogerontology 21:109–123
pubmed: 31659616 doi: 10.1007/s10522-019-09846-x
Stepien K, Skoneczna A, Kula-Maximenko M, Jurczyk L, Molon M (2022) Depletion of the origin recognition complex subunits delays aging in budding yeast. Cells 11:1252
pubmed: 35455932 pmcid: 9032818 doi: 10.3390/cells11081252
Stepien K, Skoneczna A, Kula-Maximenko M, Jurczyk L, Molon M (2024) Disorders in the CMG helicase complex increase the proliferative capacity and delay chronological aging of budding yeast. Biochim Biophys Acta Mol Cell Res 1871:119621
pubmed: 37907194 doi: 10.1016/j.bbamcr.2023.119621
Stirling PC, Bloom MS, Solanki-Patil T, Smith S, Sipahimalani P, Li ZJ, Kofoed M, Ben-Aroya S, Myung K, Hieter P (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002057
doi: 10.1371/journal.pgen.1002057 pubmed: 21552543 pmcid: 3084213
Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A (2021) Cell Profiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22:433
pubmed: 34507520 pmcid: 8431850 doi: 10.1186/s12859-021-04344-9
Stringer C, Wang T, Michaelos M, Pachitariu M (2021) Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18:100–106
pubmed: 33318659 doi: 10.1038/s41592-020-01018-x
Su XFA, Dion V, Gasser SM, Freudenreich CH (2015) Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability. Genes Dev 29:1006–1017
pubmed: 25940904 pmcid: 4441049 doi: 10.1101/gad.256404.114
Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332
pubmed: 17167415 doi: 10.1038/nature05465
Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H (2011a) Origin association of SId3, SId7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21:2055–2063
pubmed: 22169533 doi: 10.1016/j.cub.2011.11.038
Tanaka T, Umemori T, Endo S, Muramatsu S, Kanemaki M, Kamimura Y, Obuse C, Araki H (2011b) Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J 30:2019–2030
pubmed: 21487389 pmcid: 3098486 doi: 10.1038/emboj.2011.115
Thu YM, Van Riper SK, Higgins L, Zhang TJ, Becker JR, Markowski TW, Nguyen HD, Griffin TJ, Bielinsky AK (2016) Slx5/Slx8 promotes replication stress tolerance by facilitating mitotic progression. Cell Rep 15:1254–1265
pubmed: 27134171 pmcid: 4864160 doi: 10.1016/j.celrep.2016.04.017
Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, Jentsch S, Rothstein R, Aragon L, Lisby M (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9:923–931
pubmed: 17643116 doi: 10.1038/ncb1619
Weinreich M, Liang C, Stillman B (1999) The Cdc6p nucleotide-binding motif is required for loading Mcm proteins onto chromatin. Proc Natl Acad Sci U S A 96:441–446
pubmed: 9892652 pmcid: 15155 doi: 10.1073/pnas.96.2.441
Yu L, Castillo LP, Mnaimneh S, Hughes TR, Brown GW (2006) A survey of essential gene function in the yeast cell division cycle. Mol Biol Cell 17:4736–4747
pubmed: 16943325 pmcid: 1635385 doi: 10.1091/mbc.e06-04-0368
Zappulla DC, Sternglanz R, Leatherwood J (2002) Control of replication timing by a transcriptional silencer. Curr Biol 12:869–875
pubmed: 12062049 doi: 10.1016/S0960-9822(02)00871-0
Zhang CY, Roberts TM, Yang J, Desai R, Brown GW (2006) Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae. DNA Repair 5:336–346
pubmed: 16325482 doi: 10.1016/j.dnarep.2005.10.010

Auteurs

Karolina Stępień (K)

Institute of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland.

Tuguldur Enkhbaatar (T)

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.

Monika Kula-Maximenko (M)

The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland.

Łukasz Jurczyk (Ł)

Institute of Agricultural Sciences, Rzeszów University, 35-601, Rzeszów, Poland.

Adrianna Skoneczna (A)

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland. ada@ibb.waw.pl.

Mateusz Mołoń (M)

Institute of Biology, Rzeszów University, 35-601, Rzeszów, Poland. mmolon@ur.edu.pl.

Classifications MeSH