Towards realizing nano-enabled precision delivery in plants.
Journal
Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273
Informations de publication
Date de publication:
06 Jun 2024
06 Jun 2024
Historique:
received:
22
10
2023
accepted:
27
03
2024
medline:
7
6
2024
pubmed:
7
6
2024
entrez:
6
6
2024
Statut:
aheadofprint
Résumé
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Identifiants
pubmed: 38844663
doi: 10.1038/s41565-024-01667-5
pii: 10.1038/s41565-024-01667-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Science Foundation (NSF)
ID : 2222373
Organisme : National Science Foundation (NSF)
ID : 2133568
Organisme : National Science Foundation (NSF)
ID : 2134535
Organisme : United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service)
ID : 2022-67021-38078
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101041729
Informations de copyright
© 2024. Springer Nature Limited.
Références
van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).
pubmed: 37117684
doi: 10.1038/s43016-021-00322-9
Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).
pubmed: 31150427
pmcid: 6544233
doi: 10.1371/journal.pone.0217148
Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).
doi: 10.1038/nclimate2317
Mbow, C. et al. Food security. In: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) 437–550 (Cambridge Univ. Press, 2022).
Borrelli, P. et al. Policy implications of multiple concurrent soil erosion processes in European farmland. Nat. Sustain. 6, 103–112 (2022).
doi: 10.1038/s41893-022-00988-4
Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020).
doi: 10.1038/s43016-020-0110-1
Servin, A. D. & White, J. C. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1, 9–12 (2016).
doi: 10.1016/j.impact.2015.12.002
Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).
pubmed: 31168073
doi: 10.1038/s41565-019-0461-7
Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).
pubmed: 31168071
doi: 10.1038/s41565-019-0439-5
Wang, Y. et al. Surface coated sulfur nanoparticles suppress Fusarium disease in field grown tomato: increased yield and nutrient biofortification. J. Agric. Food Chem. 70, 14377–14385 (2022).
pubmed: 36331134
doi: 10.1021/acs.jafc.2c05255
Deng, C. et al. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. Sci. Total Environ. 905, 167799 (2023).
pubmed: 37838047
doi: 10.1016/j.scitotenv.2023.167799
Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).
pubmed: 32341352
pmcid: 7184762
doi: 10.1038/s41467-020-15731-w
Santana, I. et al. Targeted carbon nanostructures for chemical and gene delivery to plant chloroplasts. ACS Nano 16, 12156–12173 (2022).
pubmed: 35943045
doi: 10.1021/acsnano.2c02714
Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).
pubmed: 30804481
pmcid: 10461892
doi: 10.1038/s41565-019-0382-5
Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).
pubmed: 31074967
doi: 10.1021/acsnano.8b09781
Law, S. S. Y. et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 13, 2417 (2022).
pubmed: 35577779
pmcid: 9110379
doi: 10.1038/s41467-022-30185-y
Ristroph, K. et al. Flash nanoprecipitation as an agrochemical nanocarrier formulation platform: phloem uptake and translocation after foliar administration. ACS Agric. Sci. Technol. 3, 987–995 (2023).
pubmed: 38021209
pmcid: 10664067
doi: 10.1021/acsagscitech.3c00204
Jeon, S.-J. et al. Targeted delivery of sucrose-coated nanocarriers with chemical cargoes to the plant vasculature enhances long-distance translocation. Small 20, e2304588 (2023).
pubmed: 37840413
doi: 10.1002/smll.202304588
Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).
pubmed: 30804482
doi: 10.1038/s41565-019-0375-4
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).
pubmed: 18654426
doi: 10.1038/nnano.2007.387
van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).
pubmed: 31695150
pmcid: 7227032
doi: 10.1038/s41565-019-0567-y
Li, M., Al-Jamal, K. T., Kostarelos, K. & Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4, 6303–6317 (2010).
pubmed: 20945925
doi: 10.1021/nn1018818
Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).
pubmed: 30191658
doi: 10.1002/smll.201802086
Santana, I. et al. Targeted delivery of plasmid DNA to chloroplasts by nanomaterials. In Vitro Cell. Dev. Biol. Anim. 58, S14–S14 (2022).
Thagun, C., Chuah, J.-A. & Numata, K. Targeted gene delivery into various plastids mediated by clustered cell-penetrating and chloroplast-targeting peptides. Adv. Sci. 6, 1902064 (2019).
doi: 10.1002/advs.201902064
Zhang, Y. et al. Star polymer size, charge content, and hydrophobicity affect their leaf uptake and translocation in plants. Environ. Sci. Technol. 55, 10758–10768 (2021).
pubmed: 34283571
doi: 10.1021/acs.est.1c01065
Spielman-Sun, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).
pubmed: 31998910
doi: 10.1039/C9NR08100C
Spielman-Sun, E. et al. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ. Sci. Nano 6, 2508–2519 (2019).
doi: 10.1039/C9EN00626E
Wu, H. et al. Phloem delivery of fludioxonil by plant amino acid transporter-mediated polysuccinimide nanocarriers for controlling Fusarium wilt in banana. J. Agric. Food Chem. 69, 2668–2678 (2021).
pubmed: 33629581
doi: 10.1021/acs.jafc.0c07028
Li, J., Li, S., Du, M., Song, Z. & Han, H. Nuclear delivery of exogenous gene in mature plants using nuclear location signal and cell-penetrating peptide nanocomplex. ACS Appl. Nano Mater. 6, 160–170 (2023).
doi: 10.1021/acsanm.2c04213
Thagun, C. et al. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano 16, 3506–3521 (2022).
pubmed: 35195009
pmcid: 8945396
doi: 10.1021/acsnano.1c07723
Kim, C., Chandrasekaran, A., Jha, A. & Ramprasad, R. Active-learning and materials design: the example of high glass transition temperature polymers. MRS Commun. 9, 860–866 (2019).
doi: 10.1557/mrc.2019.78
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).
pubmed: 29532027
pmcid: 5833007
doi: 10.1021/acscentsci.7b00572
Shmilovich, K. et al. Discovery of self-assembling π-conjugated peptides by active learning-directed coarse-grained molecular simulation. J. Phys. Chem. B 124, 3873–3891 (2020).
pubmed: 32180410
doi: 10.1021/acs.jpcb.0c00708
Bevers, S. et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).
pubmed: 35821637
pmcid: 9273295
doi: 10.1016/j.ymthe.2022.07.007
Brochu, E., Cora, V. M. & de Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Preprint at https://arxiv.org/abs/1012.2599 (2010).
Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016).
pubmed: 26760228
doi: 10.1021/acs.nanolett.5b04467
Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).
pubmed: 32628442
doi: 10.1021/acsnano.9b09178
Yu, M. et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 7, 11271–11280 (2017).
doi: 10.1039/C6RA27345A
Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10, 257–278 (2016).
pubmed: 26067571
doi: 10.3109/17435390.2015.1048326
Avital, A. et al. Foliar delivery of siRNA particles for treating viral infections in agricultural grapevines. Adv. Funct. Mater. 31, 2101003 (2021).
pubmed: 34744552
pmcid: 7611933
doi: 10.1002/adfm.202101003
Chang, F.-P. et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J. Mater. Chem. B 1, 5279 (2013).
pubmed: 32263331
doi: 10.1039/c3tb20529k
Zhang, Y. et al. Charge, aspect ratio, and plant species affect uptake efficiency and translocation of polymeric agrochemical nanocarriers. Environ. Sci. Technol. 57, 8269–8279 (2023).
pubmed: 37227395
pmcid: 10249409
doi: 10.1021/acs.est.3c01154
Zhang, L., Chen, H., Xie, J., Becton, M. & Wang, X. Interplay of nanoparticle rigidity and its translocation ability through cell membrane. J. Phys. Chem. B 123, 8923–8930 (2019).
pubmed: 31566375
doi: 10.1021/acs.jpcb.9b07452
Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).
pubmed: 30910954
pmcid: 6462094
doi: 10.1073/pnas.1818290116
Guo, J. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 11, 1105–1111 (2016).
pubmed: 27723730
doi: 10.1038/nnano.2016.172
Jain, R. G. et al. Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plants 8, 535–548 (2022).
pubmed: 35577960
doi: 10.1038/s41477-022-01152-8
Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).
pubmed: 28067898
doi: 10.1038/nplants.2016.207
Ma, C. et al. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nat. Nanotechnol. 15, 1033–1042 (2020).
pubmed: 33077964
doi: 10.1038/s41565-020-00776-1
Chariou, P. L. & Steinmetz, N. F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11, 4719–4730 (2017).
pubmed: 28345874
doi: 10.1021/acsnano.7b00823
Santa Cruz, S. Perspective: phloem transport of viruses and macromolecules—what goes in must come out. Trends Microbiol. 7, 237–241 (1999).
pubmed: 10366860
doi: 10.1016/S0966-842X(99)01508-5
Caparco, A. A., González-Gamboa, I., Hays, S. S., Pokorski, J. K. & Steinmetz, N. F. Delivery of nematicides using TMGMV-derived spherical nanoparticles. Nano Lett. 23, 5785–5793 (2023).
pubmed: 37327572
doi: 10.1021/acs.nanolett.3c01684
Chariou, P. L. et al. Soil mobility of synthetic and virus-based model nanopesticides. Nat. Nanotechnol. 14, 712–718 (2019).
pubmed: 31110265
pmcid: 6988359
doi: 10.1038/s41565-019-0453-7
Cao, J. et al. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl. Mater. Interfaces 7, 9546–9553 (2015).
pubmed: 25906360
doi: 10.1021/acsami.5b00940
Ali, Z. et al. DNA–carbon nanotube binding mode determines the efficiency of carbon nanotube-mediated DNA delivery to intact plants. ACS Appl. Nano Mater. 5, 4663–4676 (2022).
doi: 10.1021/acsanm.1c03482
Xu, T. et al. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core–shell nanostructures. ACS Nano 16, 6034–6048 (2022).
pubmed: 35404588
doi: 10.1021/acsnano.1c11490
Zhang, Y. et al. Star polymers with designed reactive oxygen species scavenging and agent delivery functionality promote plant stress tolerance. ACS Nano 16, 4467–4478 (2022).
pubmed: 35179875
doi: 10.1021/acsnano.1c10828
Ng, K. K. et al. Intracellular delivery of proteins via fusion peptides in intact plants. PLoS ONE 11, e0154081 (2016).
pubmed: 27100681
pmcid: 4839658
doi: 10.1371/journal.pone.0154081
Tör, M., Lotze, M. T. & Holton, N. Receptor-mediated signalling in plants: molecular patterns and programmes. J. Exp. Bot. 60, 3645–3654 (2009).
pubmed: 19628572
pmcid: 2766824
doi: 10.1093/jxb/erp233
Kim, K. et al. Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environ. Sci. Nano 9, 2691–2703 (2022).
doi: 10.1039/D2EN00158F
Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).
pubmed: 32243788
doi: 10.1016/j.cell.2020.02.001
Popescu, M. & Ungureanu, C. Biosensors in food and healthcare industries: bio-coatings based on biogenic nanoparticles and biopolymers. Coat. World 13, 486 (2023).
González-Gamboa, I., Manrique, P., Sánchez, F. & Ponz, F. Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity. J. Biotechnol. 254, 17–24 (2017).
pubmed: 28625680
doi: 10.1016/j.jbiotec.2017.06.014
Song, E.-Q. et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5, 761–770 (2011).
pubmed: 21250650
pmcid: 3055982
doi: 10.1021/nn1011336
Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).
doi: 10.1186/s12951-018-0392-8
Zhang, N. et al. Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun. 40, e1900096 (2019).
pubmed: 31111979
doi: 10.1002/marc.201900096
Nemiwal, M., Zhang, T. C. & Kumar, D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb. Technol. 156, 110006 (2022).
pubmed: 35144119
doi: 10.1016/j.enzmictec.2022.110006
Mozafari, M. R. M. Nano-immunoengineering: opportunities and challenges. Curr. Opin. Biomed. Eng. 10, 51–59 (2019).
doi: 10.1016/j.cobme.2019.02.001
Wu, Z. et al. One-step supramolecular multifunctional coating on plant virus nanoparticles for bioimaging and therapeutic applications. ACS Appl. Mater. Interfaces 14, 13692–13702 (2022).
pubmed: 35258299
pmcid: 9159738
doi: 10.1021/acsami.1c22690
Caparco, A. A., Dautel, D. R. & Champion, J. A. Protein mediated enzyme immobilization. Small 18, e2106425 (2022).
pubmed: 35182030
doi: 10.1002/smll.202106425
Gao, Y. et al. Mitochondria-targeted nanomedicine for enhanced efficacy of cancer therapy. Front. Bioeng. Biotechnol. 9, 720508 (2021).
pubmed: 34490227
pmcid: 8418302
doi: 10.3389/fbioe.2021.720508
Feger, G., Angelov, B. & Angelova, A. Prediction of amphiphilic cell-penetrating peptide building blocks from protein-derived amino acid sequences for engineering of drug delivery nanoassemblies. J. Phys. Chem. B 124, 4069–4078 (2020).
pubmed: 32337991
doi: 10.1021/acs.jpcb.0c01618
Kelly, L., Maier, K. E., Yan, A. & Levy, M. A comparative analysis of cell surface targeting aptamers. Nat. Commun. 12, 6275 (2021).
pubmed: 34725326
pmcid: 8560833
doi: 10.1038/s41467-021-26463-w
Care, A., Bergquist, P. L. & Sunna, A. Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol. 33, 259–268 (2015).
pubmed: 25796487
doi: 10.1016/j.tibtech.2015.02.005
Baneyx, F. & Schwartz, D. T. Selection and analysis of solid-binding peptides. Curr. Opin. Biotechnol. 18, 312–317 (2007).
pubmed: 17616387
doi: 10.1016/j.copbio.2007.04.008
Peltomaa, R., Benito-Peña, E., Barderas, R. & Moreno-Bondi, M. C. Phage display in the quest for new selective recognition elements for biosensors. ACS Omega 4, 11569–11580 (2019).
pubmed: 31460264
pmcid: 6682082
doi: 10.1021/acsomega.9b01206
Teymennet-Ramírez, K. V., Martínez-Morales, F. & Trejo-Hernández, M. R. Yeast surface display system: strategies for improvement and biotechnological applications. Front. Bioeng. Biotechnol. 9, 794742 (2022).
pubmed: 35083204
pmcid: 8784408
doi: 10.3389/fbioe.2021.794742
Niebling, S. et al. FoldAffinity: binding affinities from nDSF experiments. Sci Rep. 11, 9572 (2021).
pubmed: 33953265
pmcid: 8099913
doi: 10.1038/s41598-021-88985-z
Ashrafizadeh, M. et al. Nanoparticles targeting STATs in cancer therapy. Cells 8, 1158 (2019).
pubmed: 31569687
pmcid: 6829305
doi: 10.3390/cells8101158
Juang, V., Chang, C.-H., Wang, C.-S., Wang, H.-E. & Lo, Y.-L. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 15, e1903296 (2019).
pubmed: 31709707
doi: 10.1002/smll.201903296
Hasim, S. & Coleman, J. J. Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med. Chem. 11, 869–883 (2019).
pubmed: 30994368
pmcid: 6543504
doi: 10.4155/fmc-2018-0465
Fischer, J. et al. Targeted drug delivery in plants: enzyme-responsive lignin nanocarriers for the curative treatment of the worldwide grapevine trunk disease Esca. Adv. Sci. 6, 1802315 (2019).
doi: 10.1002/advs.201802315
Sondhi, P., Maruf, M. H. U. & Stine, K. J. Nanomaterials for biosensing lipopolysaccharide. Biosensors 10, 2 (2019).
pubmed: 31877825
pmcid: 7168309
doi: 10.3390/bios10010002
Angsantikul, P. et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv. Ther. 1, 1800016 (2018).
doi: 10.1002/adtp.201800016
Vega-Vásquez, P., Mosier, N. S. & Irudayaraj, J. Nanoscale drug delivery systems: from medicine to agriculture. Front. Bioeng. Biotechnol. 8, 79 (2020).
pubmed: 32133353
pmcid: 7041307
doi: 10.3389/fbioe.2020.00079
Wang, A. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr. Opin. Virol. 48, 10–16 (2021).
pubmed: 33784579
doi: 10.1016/j.coviro.2021.03.002
Solovyev, A. G. et al. Distinct mechanisms of endomembrane reorganization determine dissimilar transport pathways in plant RNA viruses. Plants 11, 2403 (2022).
pubmed: 36145804
pmcid: 9504206
doi: 10.3390/plants11182403
Kim, W. et al. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv. Drug Deliv. Rev. 192, 114635 (2023).
pubmed: 36503885
doi: 10.1016/j.addr.2022.114635
Borgatta, J. et al. Influence of CuO nanoparticle aspect ratio and surface charge on disease suppression in tomato (Solanum lycopersicum). J. Agric. Food Chem. 71, 9644–9655 (2023).
pubmed: 37321591
doi: 10.1021/acs.jafc.2c09153
Spielman-Sun, E. et al. Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu(OH)
pubmed: 30078329
doi: 10.1021/acs.est.8b02111
Gao, X. et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ. Sci. Technol. 52, 2888–2897 (2018).
pubmed: 29385794
doi: 10.1021/acs.est.7b05816
Avellan, A. et al. Remote biodegradation of Ge–imogolite nanotubes controlled by the iron homeostasis of Pseudomonas brassicacearum. Environ. Sci. Technol. 50, 7791–7798 (2016).
pubmed: 27347687
doi: 10.1021/acs.est.6b01455
McManus, P. et al. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on copper bioavailability and uptake. Environ. Toxicol. Chem. 37, 2619–2632 (2018).
pubmed: 29978493
doi: 10.1002/etc.4226
Li, C. et al. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes. Ann. Bot. 123, 57–68 (2019).
pubmed: 30020418
doi: 10.1093/aob/mcy135
Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).
pubmed: 24633343
doi: 10.1038/nmat3890
Prakash, S. & Deswal, R. Analysis of temporally evolved nanoparticle–protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. Plant Physiol. Biochem. 146, 143–156 (2020).
pubmed: 31751914
doi: 10.1016/j.plaphy.2019.10.036
Borgatta, J. R. et al. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci. Nano 8, 1067–1080 (2021).
doi: 10.1039/D1EN00140J
Grieves, M. & Vickers, J. in Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches (eds Kahlen, F.-J. et al.) 85–113 (Springer, 2017).
Semeraro, C., Lezoche, M., Panetto, H. & Dassisti, M. Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021).
doi: 10.1016/j.compind.2021.103469
Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016).
pubmed: 26512019
doi: 10.1136/heartjnl-2015-308044
Votta, E. et al. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013).
pubmed: 23174421
doi: 10.1016/j.jbiomech.2012.10.026
Yeats, T. H. & Rose, J. K. C. The formation and function of plant cuticles. Plant Physiol. 163, 5–20 (2013).
pubmed: 23893170
pmcid: 3762664
doi: 10.1104/pp.113.222737
Hedrich, R. Ion channels in plants. Physiol. Rev. 92, 1777–1811 (2012).
pubmed: 23073631
doi: 10.1152/physrev.00038.2011
Zimmermann, U. et al. Xylem water transport—is the available evidence consistent with the cohesion theory. Plant Cell. Environ. 17, 1169–1181 (1994).
doi: 10.1111/j.1365-3040.1994.tb02015.x
De Schepper, V., De Swaef, T., Bauweraerts, I. & Steppe, K. Phloem transport: a review of mechanisms and controls. J. Exp. Bot. 64, 4839–4850 (2013).
pubmed: 24106290
doi: 10.1093/jxb/ert302
Frenkel, D. & Smit, B. in Understanding Molecular Simulation 2nd edn (eds Frenkel, D. & Smit, B.) 63–107 (Academic Press, 2002).
Lemkul, J. A., Huang, J., Roux, B. & MacKerell, A. D. Jr An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem. Rev. 116, 4983–5013 (2016).
pubmed: 26815602
pmcid: 4865892
doi: 10.1021/acs.chemrev.5b00505
Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).
pubmed: 22577825
doi: 10.1146/annurev-biophys-042910-155245
Marrink, S. J. & Tieleman, D. P. Perspective on the MARTINI model. Chem. Soc. Rev. 42, 6801–6822 (2013).
pubmed: 23708257
doi: 10.1039/c3cs60093a
Marrink, S. J. et al. Computational modeling of realistic cell membranes. Chem. Rev. 119, 6184–6226 (2019).
pubmed: 30623647
pmcid: 6509646
doi: 10.1021/acs.chemrev.8b00460
Murtola, T., Bunker, A., Vattulainen, I., Deserno, M. & Karttunen, M. Multiscale modeling of emergent materials: biological and soft matter. Phys. Chem. Chem. Phys. 11, 1869–1892 (2009).
pubmed: 19279999
doi: 10.1039/b818051b
Cosgrove, D. J. Building an extensible cell wall. Plant Physiol. 189, 1246–1277 (2022).
pubmed: 35460252
pmcid: 9237729
doi: 10.1093/plphys/kiac184
Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).
pubmed: 33986175
doi: 10.1126/science.abf2824
Roth-Nebelsick, A., Hassiotou, F. & Veneklaas, E. J. Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiol. 151, 2018–2027 (2009).
pubmed: 19864375
pmcid: 2785996
doi: 10.1104/pp.109.146969
Schulte, P. J. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytol. 193, 721–729 (2012).
pubmed: 22142249
doi: 10.1111/j.1469-8137.2011.03986.x
Koch, T., Heck, K., Schröder, N., Class, H. & Helmig, R. A new simulation framework for soil–root interaction, evaporation, root growth, and solute transport. Vadose Zone J. 17, 170210 (2018).
doi: 10.2136/vzj2017.12.0210
Mai, T. H., Schnepf, A., Vereecken, H. & Vanderborght, J. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients. Plant Soil 439, 273–292 (2019).
doi: 10.1007/s11104-018-3890-4
Porter, T. K. et al. A theory of mechanical stress-induced H
pubmed: 36478092
doi: 10.1007/s00285-022-01835-y
Valli, A., Koponen, A., Vesala, T. & Timonen, J. Simulations of water flow through bordered pits of conifer xylem. J. Stat. Phys. 107, 121–142 (2002).
doi: 10.1023/A:1014554419722
Sheiner, L. B. & Steimer, J. L. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu. Rev. Pharmacol. Toxicol. 40, 67–95 (2000).
pubmed: 10836128
doi: 10.1146/annurev.pharmtox.40.1.67
Ma, Y., Dixit, V., Innes, M. J., Guo, X. & Rackauckas, C. A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions. In 2021 IEEE High Performance Extreme Computing Conference (HPEC) 1–9 (IEEE, 2021).
Wang, S., Ren, L., Liu, Y., Han, Z. & Yang, Y. Mechanical characteristics of typical plant leaves. J. Bionic Eng. 7, 294–300 (2010).
doi: 10.1016/S1672-6529(10)60253-3
Comtet, J., Jensen, K. H., Turgeon, R., Stroock, A. D. & Hosoi, A. E. Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip. Nat. Plants 3, 17032 (2017).
pubmed: 28319082
doi: 10.1038/nplants.2017.32
Fernández, V., Guzmán-Delgado, P., Graça, J., Santos, S. & Gil, L. Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front. Plant Sci. 7, 427 (2016).
pubmed: 27066059
pmcid: 4814898
doi: 10.3389/fpls.2016.00427
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
pubmed: 17379667
pmcid: 1851593
doi: 10.1073/pnas.0608361104
Scarpella, E. & Meijer, A. H. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164, 209–242 (2004).
pubmed: 33873557
doi: 10.1111/j.1469-8137.2004.01191.x
Schlüter, U. & Weber, A. P. M. Regulation and evolution of C
pubmed: 32131603
doi: 10.1146/annurev-arplant-042916-040915
Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
doi: 10.1063/1.4812323
de Pablo, J. J. et al. New frontiers for the materials genome initiative. npj Comput. Mater. 5, 41 (2019).
doi: 10.1038/s41524-019-0173-4
Joshi, A. et al. Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl. Nanosci. 8, 1399–1414 (2018).
doi: 10.1007/s13204-018-0801-1
Demirer, G. S. et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6, eaaz0495 (2020).
pubmed: 32637592
pmcid: 7314522
doi: 10.1126/sciadv.aaz0495
Zhang, H. et al. Gold-nanocluster-mediated delivery of siRNA to intact plant cells for efficient gene knockdown. Nano Lett. 21, 5859–5866 (2021).
pubmed: 34152779
pmcid: 10539026
doi: 10.1021/acs.nanolett.1c01792
Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).
pubmed: 29099581
doi: 10.1021/acsnano.7b05723
Chacón-Madrid, K., da Silva Francischini, D. & Arruda, M. A. Z. The role of silver nanoparticles effects in the homeostasis of metals in soybean cultivation through qualitative and quantitative laser ablation bioimaging. J. Trace Elem. Med. Biol. 79, 127207 (2023).
pubmed: 37224744
doi: 10.1016/j.jtemb.2023.127207
Koelmel, J., Leland, T., Wang, H., Amarasiriwardena, D. & Xing, B. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ. Pollut. 174, 222–228 (2013).
pubmed: 23277326
doi: 10.1016/j.envpol.2012.11.026
Vogel-Mikuš, K., Pongrac, P., Kump, P., Kodre, A. & Arčon, I. in X-Ray Fluorescence in Biological Sciences (eds Singh, V. K. et al.) Ch. 9, 151–162 (Wiley, 2022).
Stegemeier, J. P., Colman, B. P., Schwab, F., Wiesner, M. R. & Lowry, G. V. Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles. Environ. Sci. Technol. 51, 4936–4943 (2017).
pubmed: 28383882
doi: 10.1021/acs.est.6b06491
Zhang, H. et al. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat. Nanotechnol. 17, 197–205 (2022).
pubmed: 34811553
doi: 10.1038/s41565-021-01018-8
Staedler, Y. M., Masson, D. & Schönenberger, J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS ONE 8, e75295 (2013).
pubmed: 24086499
pmcid: 3785515
doi: 10.1371/journal.pone.0075295
Avellan, A. et al. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nat. Nanotechnol. 13, 1072–1077 (2018).
pubmed: 30104621
doi: 10.1038/s41565-018-0231-y
López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. A., Peralta-Videa, J. R. & Gardea-Torresdey, J. L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO
pubmed: 20187606
pmcid: 2852460
doi: 10.1021/jf904472e
Larue, C. et al. Fate of pristine TiO
pubmed: 24709478
doi: 10.1016/j.jhazmat.2014.03.014
Dan, Y. et al. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO
pubmed: 27129977
doi: 10.1007/s00216-016-9565-1
Bao, D., Oh, Z. G. & Chen, Z. Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front. Plant Sci. 7, 32 (2016).
pubmed: 26870057
pmcid: 4734101
doi: 10.3389/fpls.2016.00032
Keller, A. A., Huang, Y. & Nelson, J. Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J. Nanopart. Res. 20, 1–13 (2018).
doi: 10.1007/s11051-018-4192-8
Montaño, M. D. et al. Exploring nanogeochemical environments: new insights from single particle ICP-TOFMS and AF4-ICPMS. ACS Earth Space Chem. 6, 943–952 (2022).
pubmed: 35495366
pmcid: 9037182
doi: 10.1021/acsearthspacechem.1c00350
Kang, M. et al. Regulatory mechanisms of phytotoxicity and corona formation on sprouts by differently charged and sized polystyrene micro/nano-plastics. Environ. Sci. Nano 10, 1244–1256 (2023).
doi: 10.1039/D2EN00915C
Yoo, S.-D., Cho, Y.-H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).
pubmed: 17585298
doi: 10.1038/nprot.2007.199
Kieran, P. M., MacLoughlin, P. F. & Malone, D. M. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52 (1997).
pubmed: 9487717
doi: 10.1016/S0168-1656(97)00163-6
Shanks, J. V. & Morgan, J. Plant ‘hairy root’ culture. Curr. Opin. Biotechnol. 10, 151–155 (1999).
pubmed: 10209145
doi: 10.1016/S0958-1669(99)80026-3
Ron, M. et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455–469 (2014).
pubmed: 24868032
pmcid: 4213079
doi: 10.1104/pp.114.239392
Moscatiello, R., Baldan, B. & Navazio, L. Plant cell suspension cultures. Methods Mol. Biol. 953, 77–93 (2013).
pubmed: 23073877
doi: 10.1007/978-1-62703-152-3_5
Tan, X.-M., Lin, C. & Fugetsu, B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon N. Y. 47, 3479–3487 (2009).
doi: 10.1016/j.carbon.2009.08.018
Lin, C., Fugetsu, B., Su, Y. & Watari, F. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170, 578–583 (2009).
pubmed: 19505757
doi: 10.1016/j.jhazmat.2009.05.025
Santos, A. R. et al. The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J. Nanobiotechnol. 8, 24 (2010).
doi: 10.1186/1477-3155-8-24
Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E. & Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6, 2128–2135 (2012).
pubmed: 22360840
doi: 10.1021/nn204643g
Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).
pubmed: 19191500
doi: 10.1021/nl803083u
Spanò, L., Mariotti, D., Pezzotti, M., Damiani, F. & Arcioni, S. Hairy root transformation in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 73, 523–530 (1987).
pubmed: 24241108
doi: 10.1007/BF00289189
Mohebodini, M., Fathi, R. & Mehri, N. Optimization of hairy root induction in chicory (Cichorium intybus L.) and effects of nanoparticles on secondary metabolites accumulation. Iran. J. Genet. Plant Breed. 6, 60–68 (2017).
Chung, I.-M., Rekha, K., Rajakumar, G. & Thiruvengadam, M. Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles. Plant Cell Tissue Organ Cult. 134, 95–106 (2018).
doi: 10.1007/s11240-018-1402-0
Chung, I.-M., Rajakumar, G. & Thiruvengadam, M. Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol. Hung. 69, 97–109 (2018).
pubmed: 29575919
doi: 10.1556/018.68.2018.1.8
Jeon, S.-J. et al. Electrostatics control nanoparticle interactions with model and native cell walls of plants and algae. Environ. Sci. Technol. 57, 19663–19677 (2023).
pubmed: 37948609
doi: 10.1021/acs.est.3c05686
Bao, G., Tang, M., Zhao, J. & Zhu, X. Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res. 11, 6 (2021).
pubmed: 33464410
pmcid: 7815856
doi: 10.1186/s13550-021-00750-5
Liu, Q. et al. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J. Biol. Eng. 14, 1 (2020).
pubmed: 31956340
pmcid: 6956507
doi: 10.1186/s13036-019-0223-y
Li, G. et al. Currently available strategies for target identification of bioactive natural products. Front. Chem 9, 761609 (2021).
pubmed: 34660543
pmcid: 8515416
doi: 10.3389/fchem.2021.761609
Wilson, B. A. P., Thornburg, C. C., Henrich, C. J., Grkovic, T. & O’Keefe, B. R. Creating and screening natural product libraries. Nat. Prod. Rep. 37, 893–918 (2020).
pubmed: 32186299
pmcid: 8494140
doi: 10.1039/C9NP00068B
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Ruff, K. M. & Pappu, R. V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021).
pubmed: 34418423
doi: 10.1016/j.jmb.2021.167208
Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2023).
pubmed: 38036854
pmcid: 10776388
doi: 10.1038/s41592-023-02087-4
Gropp, R. E. NSF: time for big ideas. Bioscience 66, 920–920 (2016).
doi: 10.1093/biosci/biw125
Simon, D. & Schiemer, F. Crossing boundaries: complex systems, transdisciplinarity and applied impact agendas. Curr. Opin. Environ. Sustain. 12, 6–11 (2015).
doi: 10.1016/j.cosust.2014.08.007
Newell, W. H. & Klein, J. T. Interdisciplinary studies into the 21st century. J. Gen. Educ. 45, 152–169 (1996).
Stokols, D., Hall, K. L., Taylor, B. K. & Moser, R. P. The science of team science: overview of the field and introduction to the supplement. Am. J. Prev. Med. 35, S77–S89 (2008).
pubmed: 18619407
doi: 10.1016/j.amepre.2008.05.002
Bammer, G. Integration and implementation sciences. In Complex Science for a Complex World (eds Perez, P. & Batten, D.) 95–108 (ANU Press, 2006).
Pohl, C., Truffer, B. & Hirsch-Hadorn, G. Addressing wicked problems through transdisciplinary research. In The Oxford Handbook of Interdisciplinarity 2nd edn (ed. Frodeman, R.) 319–331 (Oxford Univ. Press, 2017).
Alhaddi, H. et al. Triple bottom line and sustainability: a literature review. Bus. Manage. Stud. 1, 6–10 (2015).
doi: 10.11114/bms.v1i2.752
Grieger, K. et al. Fostering responsible innovation through stakeholder engagement: case study of North Carolina sweetpotato stakeholders. Sustain. Sci. Pract. Policy 14, 2274 (2022).
Tait, J. Upstream engagement and the governance of science. The shadow of the genetically modified crops experience in Europe. EMBO Rep. 10 (Suppl. 1), S18–S22 (2009).
Merck, A. W., Grieger, K. D. & Kuzma, J. How can we promote the responsible innovation of nano-agrifood research? Environ. Sci. Policy 137, 185–190 (2022).
doi: 10.1016/j.envsci.2022.08.027
National Nanotechnology Initiative Strategic Plan (NNI, 2021).
Grieger, K., Merck, A. & Kuzma, J. Formulating best practices for responsible innovation of nano-agrifoods through stakeholder insights and reflection. J, Responsib. Technol. 10, 100030 (2022).
doi: 10.1016/j.jrt.2022.100030
Park, K. Nanotechnology: what it can do for drug delivery. J. Control. Release 120, 1–3 (2007).
pubmed: 17532520
pmcid: 1949907
doi: 10.1016/j.jconrel.2007.05.003
Hua, S., de Matos, M. B. C., Metselaar, J. M. & Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018).
pubmed: 30065653
pmcid: 6056679
doi: 10.3389/fphar.2018.00790
Shen, S., Wu, Y., Liu, Y. & Wu, D. High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 12, 4085–4109 (2017).
doi: 10.2147/IJN.S132780
Liu, Y., Yang, G., Jin, S., Xu, L. & Zhao, C.-X. Development of high-drug-loading nanoparticles. ChemPlusChem 85, 2143–2157 (2020).
pubmed: 32864902
doi: 10.1002/cplu.202000496
Mercier, J. & Lindow, S. E. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66, 369–374 (2000).
pubmed: 10618250
pmcid: 91832
doi: 10.1128/AEM.66.1.369-374.2000
Dror, I., Yaron, B. & Berkowitz, B. Abiotic soil changes induced by engineered nanomaterials: a critical review. J. Contam. Hydrol. 181, 3–16 (2015).
pubmed: 25913535
doi: 10.1016/j.jconhyd.2015.04.004
Grieger, K. D. et al. Responsible innovation of nano-agrifoods: insights and views from U.S. stakeholders. NanoImpact 24, 100365 (2021).
pubmed: 35559824
doi: 10.1016/j.impact.2021.100365
Cummings, C. L., Kuzma, J., Kokotovich, A., Glas, D. & Grieger, K. Barriers to responsible innovation of nanotechnology applications in food and agriculture: a study of US experts and developers. NanoImpact 23, 100326 (2021).
pubmed: 35559827
doi: 10.1016/j.impact.2021.100326
Kuzma, J. & Grieger, K. Community-led governance for gene-edited crops. Science 370, 916–918 (2020).
pubmed: 33214269
doi: 10.1126/science.abd1512
Xu, T. et al. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 8, 9537–9548 (2020).
doi: 10.1021/acssuschemeng.0c02696
Wypij, M. et al. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: chances, challenges, and consumers’ perception. Front. Chem. 10, 1106230 (2022).
pubmed: 36704616
doi: 10.3389/fchem.2022.1106230
Accinelli, C. et al. Degradation of microplastic seed film-coating fragments in soil. Chemosphere 226, 645–650 (2019).
pubmed: 30959449
doi: 10.1016/j.chemosphere.2019.03.161
Deng, L., Cai, L., Sun, F., Li, G. & Che, Y. Public attitudes towards microplastics: perceptions, behaviors and policy implications. Resour. Conserv. Recycl. 163, 105096 (2020).
doi: 10.1016/j.resconrec.2020.105096
Lian, J. et al. Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 318, 128571 (2021).
doi: 10.1016/j.jclepro.2021.128571
Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M. & Yousefi, H. Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. Fibers Polym. 16, 529–536 (2015).
doi: 10.1007/s12221-015-0529-4
Yadav, M. et al. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess. 6, 1–20 (2019).
doi: 10.1186/s40643-019-0243-y
Sharma, V., Tiwari, P. & Mobin, S. M. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 5, 8904–8924 (2017).
pubmed: 32264117
doi: 10.1039/C7TB02484C
Ðorđević, L., Arcudi, F., Cacioppo, M. & Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022).
pubmed: 35173327
doi: 10.1038/s41565-021-01051-7
Goswami, P., Mathur, J. & Srivastava, N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon 8, e09908 (2022).
pubmed: 35847613
pmcid: 9284391
doi: 10.1016/j.heliyon.2022.e09908
Siddiqui, M. H. & Al-Whaibi, M. H. Role of nano-SiO
pubmed: 24596495
doi: 10.1016/j.sjbs.2013.04.005
Attarilar, S. et al. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front. Bioeng. Biotechnol. 8, 822 (2020).
pubmed: 32766232
pmcid: 7380248
doi: 10.3389/fbioe.2020.00822
Zhang, P. et al. Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16, e2000705 (2020).
pubmed: 32462786
doi: 10.1002/smll.202000705
Pourzahedi, L. et al. Life cycle considerations of nano-enabled agrochemicals: are today’s tools up to the task? Environ. Sci. Nano 5, 1057–1069 (2018).
doi: 10.1039/C7EN01166K
Peng, B. et al. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat. Plants 6, 338–348 (2020).
pubmed: 32296143
doi: 10.1038/s41477-020-0625-3