The 5'-terminal stem-loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH.
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
06 Jun 2024
06 Jun 2024
Historique:
accepted:
22
05
2024
revised:
16
05
2024
received:
31
07
2023
medline:
6
6
2024
pubmed:
6
6
2024
entrez:
6
6
2024
Statut:
aheadofprint
Résumé
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5'-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5'- and 3'-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12-C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5'-UTR of SARS-CoV-2.
Identifiants
pubmed: 38842942
pii: 7688986
doi: 10.1093/nar/gkae477
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Johann Wolfgang Goethe-University Frankfurt
Organisme : Deutsche Forschungsgemeinschaft
ID : 495006306
Organisme : Bundesministerium für Wissenschaft und Forschung
Organisme : state of Hesse
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.