miR-7 controls glutamatergic transmission and neuronal connectivity in a Cdr1as-dependent manner.
Cdr1as
Neuronal Activity
circRNA
miR-7
miRNA
Journal
EMBO reports
ISSN: 1469-3178
Titre abrégé: EMBO Rep
Pays: England
ID NLM: 100963049
Informations de publication
Date de publication:
03 Jun 2024
03 Jun 2024
Historique:
received:
04
01
2024
accepted:
14
05
2024
revised:
12
04
2024
medline:
4
6
2024
pubmed:
4
6
2024
entrez:
3
6
2024
Statut:
aheadofprint
Résumé
The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.
Identifiants
pubmed: 38831125
doi: 10.1038/s44319-024-00168-9
pii: 10.1038/s44319-024-00168-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : Gottfried Wilhelm Leibniz Prize
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : DFG EXC2049
Organisme : Deutsches Zentrum für Herz-Kreislaufforschung (DZHK)
ID : 81X2100155
Organisme : EU ITN - circular RNA Biology Training Network
ID : circRTrain (721890)
Organisme : Polish National Agency for Academic Exchange
ID : PPN/PPO/2019/1/00035/U/0001
Organisme : National Science Centre
ID : 2018/30/E/NZ3/00624
Informations de copyright
© 2024. The Author(s).
Références
Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM, Sivachenko A, Thompson DA, Wysoker A, Fennell T, Gnirke A, Pochet N, Regev A, Levin JZ (2013) Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods 10(7):623–629. https://doi.org/10.1038/nmeth.2483
doi: 10.1038/nmeth.2483
pubmed: 23685885
pmcid: 3821180
Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:e05005. https://doi.org/10.7554/eLife.05005
Agbu P, Cassidy JJ, Braverman J, Jacobson A, Carthew RW (2019) MicroRNA miR-7 Regulates Secretion of Insulin-Like Peptides. Endocrinology 161(2):bqz040. https://doi.org/10.1210/endocr/bqz040
doi: 10.1210/endocr/bqz040
pmcid: 7029775
Bahry E, Breimann L, Zouinkhi M, Epstein L, Kolyvanov K, Mamrak N, King B, Long X, Harrington KIS, Lionnet T, Preibisch S (2022) RS-FISH: Precise, interactive, fast, and scalable FISH spot detection. Nat Methods 19(12):12. https://doi.org/10.1038/s41592-022-01669-y
Bartel DP (2018) Metazoan MicroRNAs. Cell 173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006
doi: 10.1016/j.cell.2018.03.006
pubmed: 29570994
pmcid: 6091663
Bartel DP, Sheng M, Lau LF, Greenberg ME (1989) Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev 3(3):304–313. https://doi.org/10.1101/gad.3.3.304
doi: 10.1101/gad.3.3.304
pubmed: 2498163
Bennett MC (2005) The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105(3):311–331. https://doi.org/10.1016/j.pharmthera.2004.10.010
doi: 10.1016/j.pharmthera.2004.10.010
pubmed: 15737408
Borghuis BG, Marvin JS, Looger LL, Demb JB (2013) Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci. 33(27):10972–85. https://doi.org/10.1523/JNEUROSCI.1241-13.2013
Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, Domínguez-Bendala J, Pastori RL (2008) Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 366(4):922–926. https://doi.org/10.1016/j.bbrc.2007.12.052
doi: 10.1016/j.bbrc.2007.12.052
pubmed: 18086561
Breiman L (2001) Random Forests. Machine Learning 45:5–32. https://doi.org/10.1023/A:1010933404324
Chen Y, Wang X (2020) miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 48(D1):D127–D131. https://doi.org/10.1093/nar/gkz757
Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463(7284):1084–1088. https://doi.org/10.1038/nature08744
doi: 10.1038/nature08744
pubmed: 20118916
pmcid: 2981144
Curran T, Morgan JI (1987) Memories of fos. Bioessays. 7(6):255–8. https://doi.org/10.1002/bies.950070606
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635
Eliscovich C, Shenoy SM, Singer RH (2017) Imaging mRNA and protein interactions within neurons. Proc Natl Acad Sci USA. 114(10):E1875–E1884. https://doi.org/10.1073/pnas.1621440114
Farsi Z, Walde M, Klementowicz AE, Paraskevopoulou F, Woehler A (2021) Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses. IScience 24(1):101909. https://doi.org/10.1016/j.isci.2020.101909
doi: 10.1016/j.isci.2020.101909
pubmed: 33392479
Gutierrez RC, Hung J, Zhang Y, Kertesz AC, Espina FJ, Colicos MA (2009) Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3. Neuroscience. 162(1):208–21. https://doi.org/10.1016/j.neuroscience.2009.04.062
Halliday DM, Rosenberg JR, Breeze P, Conway BA (2006) Neural spike train synchronization indices: definitions, interpretations, and applications. IEEE Trans Biomed Eng. 53(6):1056–66. https://doi.org/10.1109/TBME.2006.873392
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993
doi: 10.1038/nature11993
pubmed: 23446346
Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA: MiRNA mediated cleavage of circular antisense RNA. EMBO J 30(21):4414–4422. https://doi.org/10.1038/emboj.2011.359
doi: 10.1038/emboj.2011.359
pubmed: 21964070
pmcid: 3230379
Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Rev. 28(3):370–490. https://doi.org/10.1016/s0165-0173(98)00018-6
Hsu S-D, Chu C-H, Tsou A-P, Chen S-J, Chen H-C, Hsu PW-C, Wong Y-H, Chen Y-H, Chen G-H, Huang H-D (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36(Database issue):D165–169. https://doi.org/10.1093/nar/gkm1012
doi: 10.1093/nar/gkm1012
pubmed: 18029362
Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc. 1(5):2406–15. https://doi.org/10.1038/nprot.2006.356
Kasper S, McEwen BS (2008) Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs. 22(1):15–26. https://doi.org/10.2165/00023210-200822010-00002
Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(2):350–362.e17. https://doi.org/10.1016/j.cell.2018.05.022
doi: 10.1016/j.cell.2018.05.022
pubmed: 29887379
pmcid: 6559361
Kredo-Russo S, Ness A, Mandelbaum AD, Walker MD, Hornstein E (2012) Regulation of pancreatic microRNA-7 expression. Exp Diabetes Res 2012:695214. https://doi.org/10.1155/2012/695214
doi: 10.1155/2012/695214
pubmed: 22675342
pmcid: 3362837
Kümmel D, Krishnakumar SS, Radoff DT, Li F, Giraudo CG, Pincet F, Rothman JE, Reinisch KM (2011) Complexin cross-links prefusion SNAREs into a zigzag array. Nat Struct Mol Biol 18(8):927–933. https://doi.org/10.1038/nsmb.2101
doi: 10.1038/nsmb.2101
pubmed: 21785414
pmcid: 3410656
Lanahan A, Worley P (1998) Immediate-early genes and synaptic function. Neurobiol Learn Mem. 70(1-2):37–43. https://doi.org/10.1006/nlme.1998.3836
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414. https://doi.org/10.1016/j.cell.2007.04.040
doi: 10.1016/j.cell.2007.04.040
pubmed: 17604727
pmcid: 2681231
LaPierre MP, Lawler K, Godbersen S, Farooqi IS, Stoffel M (2022) MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis. Nat Commun 13(1):1. https://doi.org/10.1038/s41467-022-33367-w
LaPierre MP, Stoffel M (2017) MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Mol Metab 6(9):1010–1023. https://doi.org/10.1016/j.molmet.2017.06.020
doi: 10.1016/j.molmet.2017.06.020
pubmed: 28951825
pmcid: 5605735
Latreille M, Hausser J, Stützer I, Zhang Q, Hastoy B, Gargani S, Kerr-Conte J, Pattou F, Zavolan M, Esguerra JLS, Eliasson L, Rülicke T, Rorsman P, Stoffel M (2014) MicroRNA-7a regulates pancreatic β cell function. J Clin Investig 124(6):2722–2735. https://doi.org/10.1172/JCI73066
doi: 10.1172/JCI73066
pubmed: 24789908
pmcid: 4038573
Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M, Rajewsky N (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43(3):340–352. https://doi.org/10.1016/j.molcel.2011.06.008
doi: 10.1016/j.molcel.2011.06.008
pubmed: 21723171
López-Murcia FJ, Reim K, Jahn O, Taschenberger H, Brose N (2019) Acute complexin knockout abates spontaneous and evoked transmitter release. Cell Rep 26(10):2521–2530.e5. https://doi.org/10.1016/j.celrep.2019.02.030
doi: 10.1016/j.celrep.2019.02.030
pubmed: 30840877
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12):550. https://doi.org/10.1186/s13059-014-0550-8
Marini F, Binder H (2019) pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinformatics. 20(1):331. https://doi.org/10.1186/s12859-019-2879-1
Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen T-W, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan W-B, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nate Methods 10(2):2. https://doi.org/10.1038/nmeth.2333
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. https://doi.org/10.1038/nature11928
doi: 10.1038/nature11928
pubmed: 23446348
Niciu MJ, Kelmendi B, Sanacora G (2012) Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav 100(4):656–664. https://doi.org/10.1016/j.pbb.2011.08.008
doi: 10.1016/j.pbb.2011.08.008
pubmed: 21889952
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076
doi: 10.1109/TSMC.1979.4310076
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9):e45. https://doi.org/10.1093/nar/29.9.e45
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kühn R, Rosenmund C, Birchmeier C, Rajewsky N (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357):eaam8526. https://doi.org/10.1126/science.aam8526
doi: 10.1126/science.aam8526
pubmed: 28798046
Pollock A, Bian S, Zhang C, Chen Z, Sun T (2014) Growth of the developing cerebral cortex is controlled by microRNA-7 through the p53 pathway. Cell Rep 7(4):1184–1196. https://doi.org/10.1016/j.celrep.2014.04.003
doi: 10.1016/j.celrep.2014.04.003
pubmed: 24813889
pmcid: 4067415
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 5(10):877–9. https://doi.org/10.1038/nmeth.1253
Rienecker KDA, Poston RG, Saha RN (2020) Merits and limitations of studying neuronal depolarization-dependent processes using elevated external potassium. ASN Neuro 12:1759091420974807. https://doi.org/10.1177/1759091420974807
doi: 10.1177/1759091420974807
pubmed: 33256465
pmcid: 7711227
Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885. https://doi.org/10.1016/j.molcel.2015.03.027
doi: 10.1016/j.molcel.2015.03.027
pubmed: 25921068
Sarafian TA, Littlejohn K, Yuan S, Fernandez C, Cilluffo M, Koo B-K, Whitelegge JP, Watson JB (2017) Stimulation of synaptoneurosome glutamate release by monomeric and fibrillated α-synuclein. J Neurosci Res 95(9):1871–1887. https://doi.org/10.1002/jnr.24024
doi: 10.1002/jnr.24024
pubmed: 28117497
pmcid: 5509520
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):7. https://doi.org/10.1038/nmeth.2019
Tauskela JS, Fang H, Hewitt M, Brunette E, Ahuja T, Thivierge J-P, Comas T, Mealing GAR (2008) Elevated synaptic activity preconditions neurons against an in vitro model of ischemia. J Biol Chem 283(50):34667–34676. https://doi.org/10.1074/jbc.M805624200
doi: 10.1074/jbc.M805624200
pubmed: 18845540
pmcid: 3259903
Tischmeyer W, Grimm R (1999) Activation of immediate early genes and memory formation. CMLS, Cell. Mol. Life Sci. 55(4):564–574. https://doi.org/10.1007/s000180050315
Tyssowski KM, DeStefino NR, Cho J-H, Dunn CJ, Poston RG, Carty CE, Jones RD, Chang SM, Romeo P, Wurzelmann MK, Ward JM, Andermann ML, Saha RN, Dudek SM, Gray JM (2018) Different neuronal activity patterns induce different gene expression programs. Neuron 98(3):530–546.e11. https://doi.org/10.1016/j.neuron.2018.04.001
doi: 10.1016/j.neuron.2018.04.001
pubmed: 29681534
pmcid: 5934296
Ueda HH, Nagasawa Y, Sato A, Onda M, Murakoshi H (2022) Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation. Cell Rep 38(1):110153. https://doi.org/10.1016/j.celrep.2021.110153
doi: 10.1016/j.celrep.2021.110153
pubmed: 34986356
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, van Mulbregt P (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods, 17(3):3. https://doi.org/10.1038/s41592-019-0686-2
Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5(1):12453. https://doi.org/10.1038/srep12453
doi: 10.1038/srep12453
pubmed: 26211738
pmcid: 4515639
You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610. https://doi.org/10.1038/nn.3975
doi: 10.1038/nn.3975
pubmed: 25714049
pmcid: 4376664
Zajaczkowski EL, Zhao Q, Liau W-S, Gong H, Madugalle SU, Periyakaruppiah A, Leighton LJ, Musgrove M, Ren H, Davies J, Marshall PR, Bredy TW (2023) Localised Cdr1as activity is required for fear extinction memory. Neurobiol Learn Mem 203:107777. https://doi.org/10.1016/j.nlm.2023.107777
doi: 10.1016/j.nlm.2023.107777
pubmed: 37257557
Zeldenrust F, Wadman WJ, Englitz B (2018) Neural coding with bursts—current state and future perspectives. Front Comput Neurosci 12:48. https://doi.org/10.3389/fncom.2018.00048
doi: 10.3389/fncom.2018.00048
pubmed: 30034330
pmcid: 6043860
Zhang L, Mubarak T, Chen Y, Lee T, Pollock A, Sun T (2018) Counter-balance between Gli3 and miR-7 is required for proper morphogenesis and size control of the mouse brain. Front Cell Neurosci 12:259. https://doi.org/10.3389/fncel.2018.00259
doi: 10.3389/fncel.2018.00259
pubmed: 30210296
pmcid: 6121149
Zhao W, Hirose T, Ishikawa M, Oshima Y, Hirai S-I, Ohno S, Taniguchi H (2007) Neonatal pancreatic cells redifferentiate into both neural and pancreatic lineages. Biochem Biophys Res Commun 352(1):84–90. https://doi.org/10.1016/j.bbrc.2006.10.179
doi: 10.1016/j.bbrc.2006.10.179
pubmed: 17109820