Inheritance of H3K9 methylation regulates genome architecture in Drosophila early embryos.
Constitutive Heterochromatin
Early Embryogenesis
H3K9 Methylation
HP1a Clusters
Intergenerational Inheritance
Journal
The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664
Informations de publication
Date de publication:
03 Jun 2024
03 Jun 2024
Historique:
received:
28
02
2024
accepted:
15
04
2024
revised:
27
03
2024
medline:
4
6
2024
pubmed:
4
6
2024
entrez:
3
6
2024
Statut:
aheadofprint
Résumé
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.
Identifiants
pubmed: 38831123
doi: 10.1038/s44318-024-00127-z
pii: 10.1038/s44318-024-00127-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : 192904750
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : EXC 2189
Organisme : EC | ERC | HORIZON EUROPE European Research Council (ERC)
ID : 819941
Informations de copyright
© 2024. The Author(s).
Références
Allshire RC, Ekwall K (2015) Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7:a018770
pubmed: 26134317
pmcid: 4484966
doi: 10.1101/cshperspect.a018770
Allshire RC, Madhani HD (2018) Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19:229–244
pubmed: 29235574
doi: 10.1038/nrm.2017.119
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data.Available online at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Arney KL, Bao SQ, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46:317–320
pubmed: 12068953
Aulner N, Monod C, Mandicourt G, Jullien D, Cuvier O, Sall A, Janssen S, Laemmli UK, Käs E (2002) The AT-hook protein D1 is essential for development and is implicated in position-effect variegation. Mol Cell Biol 22:1218–1232
pubmed: 11809812
pmcid: 134649
doi: 10.1128/MCB.22.4.1218-1232.2002
Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124
pubmed: 11242054
doi: 10.1038/35065138
Becker JS, McCarthy RL, Sidoli S, Donahue G, Kaeding KE, He Z, Lin S, Garcia BA, Zaret KS (2017) Genomic and proteomic resolution of heterochromatin and its restriction of alternate fate genes. Mol Cell 68:1023–1037.e1015
pubmed: 29272703
pmcid: 5858919
doi: 10.1016/j.molcel.2017.11.030
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300
doi: 10.1111/j.2517-6161.1995.tb02031.x
Bhardwaj V, Heyne S, Sikora K, Rabbani L, Rauer M, Kilpert F, Richter AS, Ryan DP, Manke T (2019) snakePipes: facilitating flexible, scalable and integrative epigenomic analysis. Bioinformatics 35:4757–4759
pubmed: 31134269
pmcid: 6853707
doi: 10.1093/bioinformatics/btz436
Biswas S, Chen Z, Karslake JD, Farhat A, Ames A, Raiymbek G, Freddolino PL, Biteen JS, Ragunathan K (2022) HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization. Sci Adv 8:eabk0793
pubmed: 35857444
pmcid: 9269880
doi: 10.1126/sciadv.abk0793
Borsos M, Perricone SM, Schauer T, Pontabry J, de Luca KL, de Vries SS, Ruiz-Morales ER, Torres-Padilla ME, Kind J (2019) Genome-lamina interactions are established de novo in the early mouse embryo. Nature 569:729
pubmed: 31118510
pmcid: 6546605
doi: 10.1038/s41586-019-1233-0
Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 103:8709–8714
pubmed: 16731634
pmcid: 1482643
doi: 10.1073/pnas.0508006103
Burton A, Brochard V, Galan C, Ruiz-Morales ER, Rovira Q, Rodriguez-Terrones D, Kruse K, Le Gras S, Udayakumar VS, Chin HG et al (2020) Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol 22:767–778
pubmed: 32601371
pmcid: 7610380
doi: 10.1038/s41556-020-0536-6
Canzio D, Chang EY, Shankar S, Kuchenbecker KM, Simon MD, Madhani HD, Narlikar GJ, Al-Sady B (2011) Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell 41:67–81
pubmed: 21211724
pmcid: 3752404
doi: 10.1016/j.molcel.2010.12.016
Canzio D, Larson A, Narlikar GJ (2014) Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 24:377–386
pubmed: 24618358
pmcid: 4077871
doi: 10.1016/j.tcb.2014.01.002
Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, Marina DB, Garcia JF, Madhani HD, Cooke R et al (2013) A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496:377–381
pubmed: 23485968
pmcid: 3907283
doi: 10.1038/nature12032
Cavalli G, Paro R (1998) The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93:505–518
pubmed: 9604927
doi: 10.1016/S0092-8674(00)81181-2
Ciabrelli F, Comoglio F, Fellous S, Bonev B, Ninova M, Szabo Q, Xuereb A, Klopp C, Aravin A, Paro R et al (2017) Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat Genet 49:876
pubmed: 28436983
pmcid: 5484582
doi: 10.1038/ng.3848
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Loser E, Schachtle MA, Mazina M, Loubiere V, Iovino N (2023) CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. Sci Adv 9:eadf2687
pubmed: 37083536
pmcid: 10121174
doi: 10.1126/sciadv.adf2687
Clough E, Moon W, Wang S, Smith K, Hazelrigg T (2007) Histone methylation is required for oogenesis in Drosophila. Development 134:157–165
pubmed: 17164421
doi: 10.1242/dev.02698
Clough E, Tedeschi T, Hazelrigg T (2014) Epigenetic regulation of oogenesis and germ stem cell maintenance by the Drosophila histone methyltransferase Eggless/dSetDB1. Dev Biol 388:181–191
pubmed: 24485852
pmcid: 4689207
doi: 10.1016/j.ydbio.2014.01.014
Cowieson NP, Partridge JF, Allshire RC, McLaughlin PJ (2000) Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol 10:517–525
pubmed: 10801440
doi: 10.1016/S0960-9822(00)00467-X
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom 13:2513–2526
doi: 10.1074/mcp.M113.031591
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372
pubmed: 19029910
doi: 10.1038/nbt.1511
Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan YF, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–U70
pubmed: 22258507
pmcid: 3271137
doi: 10.1038/nature10802
Dodge JE, Kang YK, Beppu H, Lei H, Li E (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24:2478–2486
pubmed: 14993285
pmcid: 355869
doi: 10.1128/MCB.24.6.2478-2486.2004
Eissenberg JC, Elgin SC (2014) HP1a: a structural chromosomal protein regulating transcription. Trends Genet 30:103–110
pubmed: 24555990
pmcid: 3991861
doi: 10.1016/j.tig.2014.01.002
Ekwall K, Nimmo ER, Javerzat JP, Borgstrom B, Egel R, Cranston G, Allshire R (1996) Mutations in the fission yeast silencing factors clr4(+) and rik1(+) disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109:2637–2648
pubmed: 8937982
doi: 10.1242/jcs.109.11.2637
Erdel F, Rademacher A, Vlijm R, Tunnermann J, Frank L, Weinmann R, Schweigert E, Yserentant K, Hummert J, Bauer C et al (2020) Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation. Mol Cell 78:236–249.e237
pubmed: 32101700
pmcid: 7163299
doi: 10.1016/j.molcel.2020.02.005
Eskeland R, Eberharter A, Imhof A (2007) HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol Cell Biol 27:453–465
pubmed: 17101786
doi: 10.1128/MCB.01576-06
Ewels P, Magnusson M, Lundin S, Kaller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048
pubmed: 27312411
pmcid: 5039924
doi: 10.1093/bioinformatics/btw354
Eymery A, Liu ZC, Ozonov EA, Stadler MB, Peters AHFM (2016) The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development 143:2767–2779
pubmed: 27317807
doi: 10.1242/dev.132746
Fabry MH, Falconio FA, Joud F, Lythgoe EK, Czech B, Hannon GJ (2021) Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis. eLife 10:e68573
pubmed: 34236313
pmcid: 8352587
doi: 10.7554/eLife.68573
Fadloun A, Eid A, Torres-Padilla ME (2013) Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr Top Dev Biol 104:1–45
pubmed: 23587237
doi: 10.1016/B978-0-12-416027-9.00001-2
Fitz-James MH, Sabarís G, Sarkies P, Bantignies F, Cavalli G (2023) Interchromosomal contacts between regulatory regions trigger stable transgenerational epigenetic inheritance in Drosophila. Preprint at https://www.biorxiv.org/content/10.1101/2023.07.13.548806v3
Fujita N, Watanabe S, Ichimura T, Ohkuma Y, Chiba T, Saya H, Nakao M (2003) MCAF mediates MBDI-dependent transcriptional repression. Mol Cell Biol 23:2834–2843
pubmed: 12665582
pmcid: 152570
doi: 10.1128/MCB.23.8.2834-2843.2003
Fukuda K, Shimi T, Shimura C, Ono T, Suzuki T, Onoue K, Okayama S, Miura H, Hiratani I, Ikeda K et al (2023) Epigenetic plasticity safeguards heterochromatin configuration in mammals. Nucleic Acids Res 51:6190–6207
pubmed: 37178005
pmcid: 10325917
doi: 10.1093/nar/gkad387
Garrigues JM, Sidoli S, Garcia BA, Strome S (2015) Defining heterochromatin in C. elegans through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Res 25:76–88
pubmed: 25467431
pmcid: 4317175
doi: 10.1101/gr.180489.114
Gomez-Auli A, Hillebrand LE, Christen D, Gunther SC, Biniossek ML, Peters C, Schilling O, Reinheckel T (2021) The secreted inhibitor of invasive cell growth CREG1 is negatively regulated by cathepsin proteases. Cell Mol Life Sci 78:733–755
pubmed: 32385587
doi: 10.1007/s00018-020-03528-5
Grewal SIS (2023) The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 83:1767–1785
pubmed: 37207657
pmcid: 10309086
doi: 10.1016/j.molcel.2023.04.020
Guthmann M, Qian C, Gialdini I, Nakatani T, Ettinger A, Schauer T, Kukhtevich I, Schneider R, Lamb DC, Burton A et al (2023) A change in biophysical properties accompanies heterochromatin formation in mouse embryos. Gene Dev 37:336–350
pubmed: 37072228
pmcid: 10153458
doi: 10.1101/gad.350353.122
Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, Booth BW, Pfeiffer BD, George RA, Svirskas R et al (2015) The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res 25:445–458
pubmed: 25589440
pmcid: 4352887
doi: 10.1101/gr.185579.114
Ibarra-Morales D, Rauer M, Quarato P, Rabbani L, Zenk F, Schulte-Sasse M, Cardamone F, Gomez-Auli A, Cecere G, Iovino N (2021) Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 12:7002
pubmed: 34853314
pmcid: 8636486
doi: 10.1038/s41467-021-27125-7
Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y (2017) Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547:419–424
pubmed: 28723896
pmcid: 9674007
doi: 10.1038/nature23262
Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J 20:5232–5241
pubmed: 11566886
pmcid: 125272
doi: 10.1093/emboj/20.18.5232
Jagannathan M, Cummings R, Yamashita YM (2019) The modular mechanism of chromocenter formation in Drosophila. eLife 8:e43938
pubmed: 30741633
pmcid: 6382350
doi: 10.7554/eLife.43938
James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50:170–180
pubmed: 2515059
Jin Y, Tam OH, Paniagua E, Hammell M (2015) TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31:3593–3599
pubmed: 26206304
pmcid: 4757950
doi: 10.1093/bioinformatics/btv422
Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10:1930
pubmed: 31036827
pmcid: 6488672
doi: 10.1038/s41467-019-09982-5
Keilhauer EC, Hein MY, Mann M (2015) Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol Cell Proteom 14:120–135
doi: 10.1074/mcp.M114.041012
Keller C, Adaixo R, Stunnenberg R, Woolcock KJ, Hiller S, Buhler M (2012) HP1(Swi6) mediates the recognition and destruction of heterochromatic RNA transcripts. Mol Cell 47:215–227
pubmed: 22683269
doi: 10.1016/j.molcel.2012.05.009
Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11:3487–3497
pubmed: 22537090
doi: 10.1021/pr3000249
Kilic S, Bachmann AL, Bryan LC, Fierz B (2015) Multivalency governs HP1 alpha association dynamics with the silent chromatin state. Nat Commun 6:7313
pubmed: 26084584
doi: 10.1038/ncomms8313
Kim J, Zhao HB, Dan JM, Kim S, Hardikar S, Hollowell D, Lin K, Lu Y, Takata Y, Shen JJ et al (2016) Maternal Setdb1 is required for meiotic progression and preimplantation development in mouse. PLoS Genet 12:e1005970
pubmed: 27070551
pmcid: 4829257
doi: 10.1371/journal.pgen.1005970
Koch CM, Honemann-Capito M, Egger-Adam D, Wodarz A (2009) Windei, the Drosophila homolog of mAM/MCAF1, is an essential cofactor of the H3K9 methyl transferase dSETDB1/eggless in germ line development. Plos Genet 5:e1000644
pubmed: 19750210
pmcid: 2730569
doi: 10.1371/journal.pgen.1000644
Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120
pubmed: 11242053
doi: 10.1038/35065132
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ (2017) Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547:236–240
pubmed: 28636604
pmcid: 5606208
doi: 10.1038/nature22822
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Maison C, Bailly D, Peters AHFM, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334
pubmed: 11850619
doi: 10.1038/ng843
Marsano RM, Giordano E, Messina G, Dimitri P (2019) A new portrait of constitutive heterochromatin: lessons from Drosophila melanogaster. Trends Genet 35:615–631
pubmed: 31320181
doi: 10.1016/j.tig.2019.06.002
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10–12
McCarthy RL, Kaeding KE, Keller SH, Zhong Y, Xu LQ, Hsieh A, Hou Y, Donahue G, Becker JS, Alberto O et al (2021) Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements (vol 23, pg 905, 2021). Nat Cell Biol 23:1212–1212
pubmed: 34588637
doi: 10.1038/s41556-021-00759-x
Methot SP, Padeken J, Brancati G, Zeller P, Delaney CE, Gaidatzis D, Kohler H, van Oudenaarden A, Grosshans H, Gasser SM (2021) H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat Cell Biol 23:1163–1175
pubmed: 34737442
pmcid: 8572725
doi: 10.1038/s41556-021-00776-w
Michalek J, Capek M, Janacek J. n.n. Stack contrast adjustment plugin. Available online at https://imagej.net/ij/plugins/stack-contrast/index.htm
Montavon T, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Ryan D, Musa Y, Mittler G, Meyer AG, Genoud C et al (2021) Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat Commun 12:4359
pubmed: 34272378
pmcid: 8285382
doi: 10.1038/s41467-021-24532-8
Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M (2002) Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep 3:975–981
pubmed: 12231507
pmcid: 1307621
doi: 10.1093/embo-reports/kvf194
Musa YR, Boller S, Puchalska M, Grosschedl R, Mittler G (2018) Comprehensive proteomic investigation of Ebf1 heterozygosity in Pro-B lymphocytes utilizing data independent acquisition. J Proteome Res 17:76–85
pubmed: 29181981
doi: 10.1021/acs.jproteome.7b00369
Mutlu B, Chen HM, Moresco JJ, Orelo BD, Yang B, Gaspar JM, Keppler-Ross S, Yates 3rd JR, Hall DH, Maine EM et al (2018) Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in C. elegans embryos. Sci Adv 4:eaat6224
pubmed: 30140741
pmcid: 6105299
doi: 10.1126/sciadv.aat6224
Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113
pubmed: 11283354
doi: 10.1126/science.1060118
Nava MM, Miroshnikova YA, Biggs LC, Whitefield DB, Metge F, Boucas J, Vihinen H, Jokitalo E, Li XP, Arcos JMG et al (2020) Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181:800
pubmed: 32302590
pmcid: 7237863
doi: 10.1016/j.cell.2020.03.052
Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, Shim HS, Tao R, Handler D, Karpowicz P et al (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8:405–407
pubmed: 21460824
pmcid: 3489273
doi: 10.1038/nmeth.1592
Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, Montavon T, Becker JS, Grindheim JM, Blahnik K et al (2019) H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science 363:294–297
pubmed: 30606806
pmcid: 6664818
doi: 10.1126/science.aau0583
Padeken J, Methot SP, Gasser SM (2022) Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 23:623–640
pubmed: 35562425
pmcid: 9099300
doi: 10.1038/s41580-022-00483-w
Padeken J, Zeller P, Towbin B, Katic I, Kalck V, Methot SP, Gasser SM (2019) Synergistic lethality between BRCA1 and H3K9me2 loss reflects satellite derepression. Gene Dev 33:436–451
pubmed: 30804228
pmcid: 6446544
doi: 10.1101/gad.322495.118
Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SCR (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303:669–672
pubmed: 14752161
doi: 10.1126/science.1092653
Penke TJ, McKay DJ, Strahl BD, Matera AG, Duronio RJ (2016) Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes Dev 30:1866–1880
pubmed: 27566777
pmcid: 5024684
doi: 10.1101/gad.286278.116
Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ (2018) Functional redundancy of variant and canonical histone H3 lysine 9 modification in Drosophila. Genetics 208:229–244
pubmed: 29133298
doi: 10.1534/genetics.117.300480
Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim HS et al (2015) The transgenic RNAi project at Harvard Medical School: resources and validation. Genetics 201:843–852
pubmed: 26320097
pmcid: 4649654
doi: 10.1534/genetics.115.180208
Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337
pubmed: 11701123
doi: 10.1016/S0092-8674(01)00542-6
Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci USA 111:E2967–2976
pubmed: 25002478
pmcid: 4115528
doi: 10.1073/pnas.1405500111
Probst AV, Santos F, Reik W, Almouzni G, Dean W (2007) Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116:403–415
pubmed: 17447080
doi: 10.1007/s00412-007-0106-8
Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40:411–420
pubmed: 18311137
doi: 10.1038/ng.99
Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42:W187–191
pubmed: 24799436
pmcid: 4086134
doi: 10.1093/nar/gku365
Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–165
pubmed: 27079975
pmcid: 4987876
doi: 10.1093/nar/gkw257
Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599
pubmed: 10949293
doi: 10.1038/35020506
Rechavi O, Lev I (2017) Principles of transgenerational small RNA inheritance in Caenorhabditis elegans. Curr Biol 27:R720–R730
pubmed: 28743023
doi: 10.1016/j.cub.2017.05.043
Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Samata M, Alexiadis A, Richard G, Georgiev P, Nuebler J, Kulkarni T, Renschler G, Basilicata MF, Zenk FL, Shvedunova M et al (2020) Intergenerationally maintained histone H4 lysine 16 acetylation is instructive for future gene activation. Cell 182:127–144.e123
pubmed: 32502394
doi: 10.1016/j.cell.2020.05.026
Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236
pubmed: 15766761
doi: 10.1016/j.ydbio.2005.01.025
Sanulli S, Narlikar GJ (2020) Liquid-like interactions in heterochromatin: Implications for mechanism and regulation. Curr Opin Cell Biol 64:90–96
pubmed: 32434105
pmcid: 7371496
doi: 10.1016/j.ceb.2020.03.004
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682
pubmed: 22743772
doi: 10.1038/nmeth.2019
Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131
pubmed: 11867540
pmcid: 125909
doi: 10.1093/emboj/21.5.1121
Seller CA, Cho CY, O’Farrell PH (2019) Rapid embryonic cell cycles defer the establishment of heterochromatin by eggless/SetDB1 in Drosophila. Genes Dev 33:403–417
pubmed: 30808658
pmcid: 6446540
doi: 10.1101/gad.321646.118
Seum C, Bontron S, Reo E, Delattre M, Spierer P (2007) Drosophila G9a is a nonessential gene. Genetics 177:1955–1957
pubmed: 18039887
pmcid: 2147950
doi: 10.1534/genetics.107.078220
Shaffer CD, Cenci G, Thompson B, Stephens GE, Slawson EE, Adu-Wusu K, Gatti M, Elgin SC (2006) The large isoform of Drosophila melanogaster heterochromatin protein 2 plays a critical role in gene silencing and chromosome structure. Genetics 174:1189–1204
pubmed: 16980400
pmcid: 1667101
doi: 10.1534/genetics.106.057604
Shaffer CD, Stephens GE, Thompson BA, Funches L, Bernat JA, Craig CA, Elgin SC (2002) Heterochromatin protein 2 (HP2), a partner of HP1 in Drosophila heterochromatin. Proc Natl Acad Sci USA 99:14332–14337
pubmed: 12376620
pmcid: 137884
doi: 10.1073/pnas.212458899
Smolko AE, Shapiro-Kulnane L, Salz HK (2018) The H3K9 methyltransferase SETDB1 maintains female identity in Drosophila germ cells. Nat Commun 9:4155
pubmed: 30297796
pmcid: 6175928
doi: 10.1038/s41467-018-06697-x
Stabell M, Eskeland R, Bjorkmo M, Larsson J, Aalen RB, Imhof A, Lambertsson A (2006) The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development. Nucleic Acids Res 34:4609–4621
pubmed: 16963494
pmcid: 1636376
doi: 10.1093/nar/gkl640
Stekhoven DJ, Buhlmann P (2012) MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118
pubmed: 22039212
doi: 10.1093/bioinformatics/btr597
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547:241–245
pubmed: 28636597
pmcid: 6022742
doi: 10.1038/nature22989
Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791
pubmed: 12130538
pmcid: 186403
doi: 10.1101/gad.989402
Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042
pubmed: 19700615
doi: 10.1242/dev.033183
Team RC (2023) R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria
Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947
pubmed: 22939621
doi: 10.1016/j.cell.2012.06.051
Tsusaka T, Shimura C, Shinkai Y (2019) ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. EMBO Rep 20:e48297
pubmed: 31576654
pmcid: 6893292
doi: 10.15252/embr.201948297
Vermaak D, Malik HS (2009) Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 43:467–492
pubmed: 19919324
doi: 10.1146/annurev-genet-102108-134802
Von Stetina JR, Orr-Weaver TL (2011) Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harbor Perspect Biol 3:a005553
Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J et al (2018) Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20:620–631
pubmed: 29686265
doi: 10.1038/s41556-018-0093-4
Wei KH, Chan C, Bachtrog D (2021) Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda. eLife 10:e55612
pubmed: 34128466
pmcid: 8285105
doi: 10.7554/eLife.55612
Wongtawan T, Taylor JE, Lawson KA, Wilmut I, Pennings S (2011) Histone H4K20me3 and HP1 alpha are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells. J Cell Sci 124:1878–1890
pubmed: 21576353
doi: 10.1242/jcs.080721
Yuan AH, Moazed D (2024) Minimal requirements for the epigenetic inheritance of engineered silent chromatin domains. P Natl Acad Sci USA 121
Yuan K, O’Farrell PH (2016) TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in Drosophila embryos. Genes Dev 30:579–593
pubmed: 26915820
pmcid: 4782051
doi: 10.1101/gad.272237.115
Zeller P, Padeken J, van Schendel R, Kalck V, Tijsterman M, Gasser SM (2016) Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat Genet 48:1385–1395
pubmed: 27668659
doi: 10.1038/ng.3672
Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanovic O, Iovino N (2017) Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357:212–216
pubmed: 28706074
doi: 10.1126/science.aam5339
Zenk F, Zhan Y, Kos P, Loser E, Atinbayeva N, Schachtle M, Tiana G, Giorgetti L, Iovino N (2021) HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 593:289–293
pubmed: 33854237
pmcid: 8116211
doi: 10.1038/s41586-021-03460-z
Zhang XF, Smits AH, van Tilburg GBA, Ovaa H, Huber W, Vermeulen M (2018) Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc 13:530–550
pubmed: 29446774
doi: 10.1038/nprot.2017.147
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184
pubmed: 21901007
pmcid: 3240576
doi: 10.1038/nature10371