Combat phytopathogenic bacteria employing Argirium-SUNCs: limits and perspectives.


Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
01 Jun 2024
Historique:
received: 26 02 2024
accepted: 15 05 2024
revised: 13 05 2024
medline: 1 6 2024
pubmed: 1 6 2024
entrez: 1 6 2024
Statut: epublish

Résumé

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag

Identifiants

pubmed: 38822872
doi: 10.1007/s00253-024-13189-0
pii: 10.1007/s00253-024-13189-0
doi:

Substances chimiques

Silver 3M4G523W1G
Anti-Bacterial Agents 0
Copper 789U1901C5

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

357

Subventions

Organisme : Ministero dell'Università e della Ricerca
ID : This work has been funded by the European Union - NextGenerationEU under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem grant ECS00000041 - VITALITY to CM and RB. We acknowledge Università degli Studi di Perugia and MUR for support within the project Vitality.

Informations de copyright

© 2024. The Author(s).

Références

Asmatulu E, Andalib MN, Subeshan B, Abedin F (2022) Impact of nanomaterials on human health: a review. Environ Chem Lett 20:2509–2529. https://doi.org/10.1007/s10311-022-01430-z
doi: 10.1007/s10311-022-01430-z
Avellan A, Yun J, Zhang Y, Spielman-Sun E, Unrine JM, Thieme J, Li J, Lombi E, Bland G, Lowry GV (2019) Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13(5):5291–5305. https://doi.org/10.1021/acsnano.8b09781
doi: 10.1021/acsnano.8b09781 pubmed: 31074967
Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV (2021) Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ Sci Technol 55(20):13417–13431. https://doi.org/10.1021/acs.est.1c00178
doi: 10.1021/acs.est.1c00178 pubmed: 33988374
Ayisigi M, Cokislerel A, Kucukcobanoglu Y, Yalcin T, Aktas LY (2020) Green synthesized silver nanoparticles for an effective control on soft rot disease pathogen Pectobacterium carotovorum and growth stimulation in pepper. Bulg J Agric Sci 26(3):574–584
Balestra GM, Fortunati E (2022) Nanotechnology-based sustainable alternatives for the management of plant diseases. Elsevier, Amsterdam
Bao D, Oh ZG, Chen Z (2016) Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci 7:32. https://doi.org/10.3389/fpls.2016.00032
doi: 10.3389/fpls.2016.00032 pubmed: 26870057 pmcid: 4734101
Barras F, Aussel L, Ezraty B (2018) Silver and antibiotic, new facts to an old story. Antibiotics 7(3):79. https://doi.org/10.3390/antibiotics7030079
doi: 10.3390/antibiotics7030079 pubmed: 30135366 pmcid: 6163818
Chavez Soria NG, Montes A, Bisson MA, Atilla-Gokcumen GE, Aga DS (2017) Mass spectrometry-based metabolomics to assess uptake of silver nanoparticles by Arabidopsis thaliana. Environ Sci Nano 4(10):1944–1953. https://doi.org/10.1039/c7en00555e
doi: 10.1039/c7en00555e
Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F (2019) Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: a review of effects on microorganisms, plants and animals. Environ Pollut 253:578–598. https://doi.org/10.1016/j.envpol.2019.07.053
doi: 10.1016/j.envpol.2019.07.053 pubmed: 31330350
Cvjetko P, Zovko M, Štefanić PP, Biba R, Tkalec M, Domijan AM, Vrček IV, Letofsky-Papst I, Šikić S, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res 25:5590–5602. https://doi.org/10.1007/s11356-017-0928-8
doi: 10.1007/s11356-017-0928-8
Duval RE, Gouyau J, Lamouroux E (2019) Limitations of recent studies dealing with the antibacterial properties of silver nanoparticles: fact and opinion. Nanomaterials 9(12):1775. https://doi.org/10.3390/nano9121775
doi: 10.3390/nano9121775 pubmed: 31847133 pmcid: 6956306
Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56(1):111–133. https://doi.org/10.1146/annurev-phyto-080417-050108
doi: 10.1146/annurev-phyto-080417-050108 pubmed: 30149792
Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. https://doi.org/10.1016/j.envint.2010.10.012
doi: 10.1016/j.envint.2010.10.012 pubmed: 21159383
Fan XJ, Saleem T, Zou HS (2022) Copper resistance mechanisms in plant pathogenic bacteria. Phytopathol Mediterr 61(1):129–138. https://doi.org/10.36253/phyto-13282
doi: 10.36253/phyto-13282
Gasbarri C, Ronci M, Aceto A, Vasani R, Iezzi G, Florio T, Barbieri F, Angelini G, Scotti L (2021) Structure and properties of electrochemically synthesized silver nanoparticles in aqueous solution by high-resolution techniques. Molecules 26(17):5155. https://doi.org/10.3390/molecules26175155
doi: 10.3390/molecules26175155 pubmed: 34500589 pmcid: 8433840
Grande R, Sisto F, Puca V, Carradori S, Ronci M, Aceto A, Muraro R, Mincione G, Scotti L (2020) Antimicrobial and antibiofilm activities of new synthesized silver ultra-nanoclusters (SUNCs) against Helicobacter pylori. Front Microbiol 11:1705. https://doi.org/10.3389/fmicb.2020.01705
doi: 10.3389/fmicb.2020.01705 pubmed: 32849359 pmcid: 7411087
Grandi L, Oehl M, Lombardi T, de Michele VR, Schmitt N, Verweire D, Balmer D (2023) Innovations towards sustainable olive crop management: a new dawn by precision agriculture including endo-therapy. Front Plant Sci 14:1180632. https://doi.org/10.3389/fpls.2023.1180632
doi: 10.3389/fpls.2023.1180632 pubmed: 37351220 pmcid: 10283359
Grillo R, Fraceto LF, Amorim MJ, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q (2021) Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J Hazard Mater 404:124148. https://doi.org/10.1016/j.jhazmat.2020.124148
doi: 10.1016/j.jhazmat.2020.124148 pubmed: 33059255
Grzesik M, Janas R, Górnik K, Romanowska-Duda Z (2012) Biological and physical methods of seed production and processing. J Res Appl Agric Eng 57(3):147–152
Guerrero DS, Bertani RP, Ledesma A, Frías MD, Romero CM, Costa JSD (2022) Silver nanoparticles synthesized by the heavy metal resistant strain Amycolatopsis tucumanensis and its application in controlling red strip disease in sugarcane. Heliyon 8(5):e09472. https://doi.org/10.1016/j.heliyon.2022.e09472
doi: 10.1016/j.heliyon.2022.e09472 pubmed: 35615433 pmcid: 9124708
He J, Zhang L, He SY, Ryser ET, Li H, Zhang W (2022) Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana. Environ Pollut 292:118448. https://doi.org/10.1016/j.envpol.2021.118448
doi: 10.1016/j.envpol.2021.118448 pubmed: 34728324
Huang D, Dang F, Huang Y, Chen N, Zhou D (2022) Uptake, translocation, and transformation of silver nanoparticles in plants. Environ Sci Nano 9(1):12–39. https://doi.org/10.1039/d1en00870f
doi: 10.1039/d1en00870f
Ishii T, Araki M (2016) Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35:1507–1518. https://doi.org/10.1007/s00299-016-1974-2
doi: 10.1007/s00299-016-1974-2 pubmed: 27038939
Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanatechnol 13(8):677–684. https://doi.org/10.1038/s41565-018-0131-1
doi: 10.1038/s41565-018-0131-1
Kannan VR, Bastas KK, Devi RS (2015) Scientific and economic impact of plant pathogenic bacteria. In: Kannan VR, Bastas KK (eds) Sustainable approaches to controlling plant pathogenic bacteria. CRC, Boca Raton, pp 369–392
doi: 10.1201/b18892
Khan AR, Azhar W, Wu J, Ulhassan Z, Salam A, Zaidi SHR, Yang S, Song G, Gan Y (2021) Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicol Environ Saf 226:112844. https://doi.org/10.1016/j.ecoenv.2021.112844
doi: 10.1016/j.ecoenv.2021.112844 pubmed: 34619479
Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T (2009) Electrochemical method for the synthesis of silver nanoparticles. J Nanopart Res 11(5):1193–1200. https://doi.org/10.1007/s11051-008-9513-x
doi: 10.1007/s11051-008-9513-x
Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron Sustain Dev 38(3):1–18. https://doi.org/10.1007/s13593-018-0503-9
doi: 10.1007/s13593-018-0503-9
Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazar Mater 264:98–106. https://doi.org/10.1016/j.jhazmat.2013.10.053
doi: 10.1016/j.jhazmat.2013.10.053
Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae Pv. Tomato. RSC Adv 7(62):38853–38860. https://doi.org/10.1039/c7ra05520j
doi: 10.1039/c7ra05520j
Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanatechnol 14(6):517–522. https://doi.org/10.1038/s41565-019-0461-7
doi: 10.1038/s41565-019-0461-7
Mancusi A, Egidio M, Marrone R, Scotti L, Paludi D, Dini I, Proroga YTR (2024) The in vitro antibacterial activity of Argirium SUNc against most common pathogenic and spoilage food bacteria. Antibiotics 13(1):109. https://doi.org/10.3390/antibiotics13010109
doi: 10.3390/antibiotics13010109 pubmed: 38275338 pmcid: 10812583
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
doi: 10.1111/j.1364-3703.2012.00804.x pubmed: 22672649 pmcid: 6638704
Molina-Hernandez JB, Aceto A, Bucciarelli T, Paludi D, Valbonetti L, Zilli K, Scotti L, Chaves-López C (2021) The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-00545-7
doi: 10.1038/s41598-021-00545-7
Molina-Hernandez JB, Scotti L, Valbonetti L, Gioia L, Paparella A, Paludi D, Aceto A, Ciriolo MR, Lopez CC (2023) Effect of membrane depolarization against Aspergillus Niger GM31 resistant by ultra nanoclusters characterized by Ag
doi: 10.1038/s41598-023-29918-w pubmed: 36792916 pmcid: 9932144
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M (2023) Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 11(2):369. https://doi.org/10.3390/microorganisms11020369
doi: 10.3390/microorganisms11020369 pubmed: 36838334 pmcid: 9961011
Morgan L (2008) Hydroponic tomato crop production. Suntec Ltd, Tokomaru
Namburi KR, Kora AJ, Chetukuri A, Kota V (2021) Biogenic silver nanoparticles as an antibacterial agent against bacterial leaf blight causing rice phytopathogen Xanthomonas oryzae Pv. Oryzae. Bioprocess Biosyst Eng 44(9):1975–1988. https://doi.org/10.1007/s00449-021-02579-7
doi: 10.1007/s00449-021-02579-7 pubmed: 33974135
Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus Niger group. Anal Bioanal Chem 395(5):1225–1242. https://doi.org/10.1007/s00216-009-3081-5
doi: 10.1007/s00216-009-3081-5 pubmed: 19756540
Noori A, Donnelly T, Colbert J, Cai W, Newman LA, White JC (2020) Exposure of tomato (Lycopersicon esculentum) to silver nanoparticles and silver nitrate: physiological and molecular response. Int J Phytorem 22(1):40–51. https://doi.org/10.1080/15226514.2019.1634000
doi: 10.1080/15226514.2019.1634000
Orfei B, Moretti C, Loreti S, Tatulli G, Onofri A, Scotti L, Aceto A, Buonaurio R (2023a) Silver nanoclusters with Ag
doi: 10.1007/s00253-023-12596-z pubmed: 37289240 pmcid: 10313544
Orfei B, Pothier JF, Fenske L, Blom J, Moretti C, Buonaurio R, Smits THM (2023b) Race-specific genotypes of Pseudomonas syringae Pv. Tomato are defined by the presence of mobile DNA elements within the genome. Front Plant Sci 14:1197706. https://doi.org/10.3389/fpls.2023.1197706
doi: 10.3389/fpls.2023.1197706 pubmed: 37476164 pmcid: 10354423
Perry JA, Wright GD (2013) The antibiotic resistance mobilome: searching for the link between environment and clinic. Front Microbiol 4:138. https://doi.org/10.3389/fmicb.2013.00138
doi: 10.3389/fmicb.2013.00138 pubmed: 23755047 pmcid: 3667243
Pompilio A, Geminiani C, Bosco D, Rana R, Aceto A, Bucciarelli T, Scotti L, Di Bonaventura G (2018) Electrochemically synthesized silver nanoparticles are active against planktonic and biofilm cells of Pseudomonas aeruginosa and other cystic fibrosis-associated bacterial pathogens. Front Microbiol 9:1349. https://doi.org/10.3389/fmicb.2018.01349
doi: 10.3389/fmicb.2018.01349 pubmed: 30026732 pmcid: 6041389
Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014
doi: 10.3389/fmicb.2017.01014 pubmed: 28676790 pmcid: 5476687
Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, Fedoroff NV, Finegold C, Garrett KA, Gilligan CA, Jones CM (2021) The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci 118(23):e2022239118. https://doi.org/10.1073/pnas.2022239118
doi: 10.1073/pnas.2022239118 pubmed: 34021073 pmcid: 8201941
Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS, Sadik OA, Safarpour M, Unrine JM, Viers J (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4(4):767–781. https://doi.org/10.1039/c6en00573j
doi: 10.1039/c6en00573j
Saponari M, Giampetruzzi A, Loconsole G, Boscia D, Saldarelli P (2019) Xylella fastidiosa in olive in Apulia: where we stand. Phytopathology 109(2):175–186. https://doi.org/10.1094/phyto-08-18-0319-fi
doi: 10.1094/phyto-08-18-0319-fi pubmed: 30376439
Saritha GNG, Anju T, Kumar A (2022) Nanotechnology- big impact: how nanotechnology is changing the future of agriculture? J Agric Food Res 100457. https://doi.org/10.1016/j.jafr.2022.100457
Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology 10(3):257–278. https://doi.org/10.3109/17435390.2015.1048326
doi: 10.3109/17435390.2015.1048326 pubmed: 26067571
Scientific Committee EFSA, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C (2018) Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: part 1, human and animal health. EFSA J 16(7):e05327. https://doi.org/10.2903/j.efsa.2018.5327
doi: 10.2903/j.efsa.2018.5327
Scotti L, Angelini G, Gasbarri C, Bucciarelli T (2017) Uncoated negatively charged silver nanoparticles: speeding up the electrochemical synthesis. Mater Res Express 4. https://doi.org/10.1088/2053-1591/aa8c39
Secretariat IPPC, Gullino M, Albajes R, Al-Jboory I, Angelotti F, Chakraborty S, Garrett K, Hurley B, Juroszek P, Makkouk K (2021) Scientific review of the impact of climate change on plant pests. FAO on behalf of the IPPC Secretariat, Rome
Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, Pugazhendhi A (2019) Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review. Curr Pharm Des 25(24):2650–2660. https://doi.org/10.2174/1381612825666190708185506
doi: 10.2174/1381612825666190708185506 pubmed: 31298154
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB (2022) Future of bacterial disease management in crop production. Annu Rev Phytopathol 60(1):259–282. https://doi.org/10.1146/annurev-phyto-021621-121806
doi: 10.1146/annurev-phyto-021621-121806 pubmed: 35790244
Sharma A, Gupta AK, Devi B (2023) Current trends in management of bacterial pathogens infecting plants. Anton Leeuw Int J G 116(4):303–326. https://doi.org/10.1007/s10482-023-01809-0
doi: 10.1007/s10482-023-01809-0
Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ, Daugherty MP, Almeida RP (2018) Xylella fastidiosa: insights into an emerging plant pathogen. Annu Rev Phytopathol 56:181–202. https://doi.org/10.1146/annurev-phyto-080417-045849
doi: 10.1146/annurev-phyto-080417-045849 pubmed: 29889627
Siddiqi KS, Husen A, Rao RA (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16(1):1–28. https://doi.org/10.1186/s12951-018-0334-5
doi: 10.1186/s12951-018-0334-5
Singaravelan R, Bangaru Sudarsan Alwar S (2015) Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl Nanosci 5(8):983–991. https://doi.org/10.1007/s13204-014-0396-0
doi: 10.1007/s13204-014-0396-0
Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M (2021) Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ Sci Process Impacts 23(2):213–239. https://doi.org/10.1039/d0em00404a
doi: 10.1039/d0em00404a pubmed: 33447834
Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480(7376):241–244. https://doi.org/10.1038/nature10571
doi: 10.1038/nature10571 pubmed: 22037308
Stegemeier J, Schwab F, Colman B, Bernhardt E, Wiesner M, Lowry G (2015) Speciation matters - bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa). Environ Sci Technol 49(14):8451–8460. https://doi.org/10.1021/acs.est.5b01147
doi: 10.1021/acs.est.5b01147 pubmed: 26106801
Sundin GW, Wang N (2018) Antibiotic resistance in plant-pathogenic bacteria. Annu Rev Phytopathol 56:161–180. https://doi.org/10.1146/annurev-phyto-080417-045946
doi: 10.1146/annurev-phyto-080417-045946 pubmed: 29856934
Sundin GW, Castiblanco LF, Yuan XC, Zeng Q, Yang CH (2016) Bacterial disease management: challenges, experience, innovation and future prospects. Mol Plant Pathol 17(9):1506–1518. https://doi.org/10.1111/mpp.12436
doi: 10.1111/mpp.12436 pubmed: 27238249 pmcid: 6638406
Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J (2022) Biological synthesis of silver nanoparticles and prospects in plant disease management. Molecules 27(15):4754. https://doi.org/10.3390/molecules27154754
doi: 10.3390/molecules27154754 pubmed: 35897928 pmcid: 9330430
Thind B (2019) Phytopathogenic bacteria and plant diseases. CRC Press, Boca Raton
doi: 10.1201/9780429242786
Trzcinska-Wencel J, Wypij M, Rai M, Golinska P (2023a) Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry. Front Microbiol 14:1125685. https://doi.org/10.3389/fmicb.2023.1125685
doi: 10.3389/fmicb.2023.1125685 pubmed: 36891391 pmcid: 9986290
Trzcinska-Wencel J, Wypij M, Terzyk AP, Rai M, Golinska P (2023b) Biofabrication of novel silver and zinc oxide nanoparticles from Fusarium solani IOR 825 and their potential application in agriculture as biocontrol agents of phytopathogens, and seed germination and seedling growth promoters. Front Chem 11:1235437. https://doi.org/10.3389/fchem.2023.1235437
doi: 10.3389/fchem.2023.1235437 pubmed: 37601908 pmcid: 10436318
Vanti GL, Kurjogi M, Basavesha KN, Teradal NL, Masaphy S, Nargund VB (2020) Synthesis and antibacterial activity of Solanum torvum mediated silver nanoparticle against Xanthomonas axonopodis Pv. Punicae and Ralstonia solanacearum. J Biotech 309:20–28. https://doi.org/10.1016/j.jbiotec.2019.12.009
doi: 10.1016/j.jbiotec.2019.12.009
Villaverde-Cantizano G, Laurenti M, Rubio-Retama J, Contreras-Cáceres R (2021) In: Mourdikoudis S (ed) Reducing agents in colloidal nanoparticle synthesis. RSC, London, pp 1–27
Wang X, Yang H, Li K, Xiang Y, Sha Y, Zhang M, Yuan X, Huang K (2020) Recent developments of the speciation analysis methods for silver nanoparticles and silver ions based on atomic spectrometry. Appl Spectrosc Rev 55(6):509–524. https://doi.org/10.1080/05704928.2019.1684303
doi: 10.1080/05704928.2019.1684303
Wei ZL, Xu SQ, Jia HR, Zhang HM (2022) Green synthesis of silver nanoparticles from Mahonia fortunei extracts and characterization of its inhibitory effect on Chinese cabbage soft rot pathogen. Front Microbiol 13:1030261. https://doi.org/10.3389/fmicb.2022.1030261
doi: 10.3389/fmicb.2022.1030261 pubmed: 36338072 pmcid: 9635054
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H (2020) Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20):8996–9031. https://doi.org/10.7150/thno.45413
doi: 10.7150/thno.45413 pubmed: 32802176 pmcid: 7415816
Xu Z, Tang T, Lin Q, Yu J, Zhang C, Zhao X, Kah M, Li L (2022) Environmental risks and the potential benefits of nanopesticides: a review. Environ Chem Lett 20(3):2097–2108. https://doi.org/10.1007/s10311-021-01338-0
doi: 10.1007/s10311-021-01338-0
Yaqoob AA, Umar K, Ibrahim MNM (2020) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci 10:1369–1378. https://doi.org/10.1007/s13204-020-01318-w
doi: 10.1007/s13204-020-01318-w

Auteurs

Benedetta Orfei (B)

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.

Chiaraluce Moretti (C)

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy. chiaraluce.moretti@unipg.it.

Anna Scian (A)

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.

Michela Paglialunga (M)

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.

Stefania Loreti (S)

Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy.

Giuseppe Tatulli (G)

Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy.

Luca Scotti (L)

Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. luca.scotti@unich.it.

Antonio Aceto (A)

Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.

Roberto Buonaurio (R)

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks

Classifications MeSH