Human post-mortem organotypic brain slice cultures: a tool to study pathomechanisms and test therapies.


Journal

Acta neuropathologica communications
ISSN: 2051-5960
Titre abrégé: Acta Neuropathol Commun
Pays: England
ID NLM: 101610673

Informations de publication

Date de publication:
31 May 2024
Historique:
received: 13 02 2024
accepted: 16 04 2024
medline: 1 6 2024
pubmed: 1 6 2024
entrez: 1 6 2024
Statut: epublish

Résumé

Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.

Identifiants

pubmed: 38822428
doi: 10.1186/s40478-024-01784-1
pii: 10.1186/s40478-024-01784-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

83

Subventions

Organisme : ZonMw
ID : TOP 91217006
Pays : Netherlands
Organisme : VWM Families Foundation
ID : VWM Families Foundation
Organisme : Progressive MS alliance challenge award
ID : PA2001-26033
Organisme : Dutch National MS Foundation
ID : OZ2021-008

Informations de copyright

© 2024. The Author(s).

Références

Adams SJ, Kirk A, Auer RN (2018) Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP): integrating the literature on hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). J Clin Neurosci 48:42–49. https://doi.org/10.1016/j.jocn.2017.10.060
doi: 10.1016/j.jocn.2017.10.060 pubmed: 29122458
Andersson M, Avaliani N, Svensson A, Wickham J, Pinborg LH, Jespersen B et al (2016) Optogenetic control of human neurons in organotypic brain cultures. Sci Rep 6:24818. https://doi.org/10.1038/srep24818
doi: 10.1038/srep24818 pubmed: 27098488 pmcid: 4838935
Avossa D, Grandolfo M, Mazzarol F, Zatta M, Ballerini L (2006) Early signs of motoneuron vulnerability in a disease model system: characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 138:1179–1194. https://doi.org/10.1016/j.neuroscience.2005.12.009
doi: 10.1016/j.neuroscience.2005.12.009 pubmed: 16442737
Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J et al (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972. https://doi.org/10.1038/nm1279
doi: 10.1038/nm1279 pubmed: 16086023
Beaino W, Janssen B, Kooij G, van der Pol SMA, van Het Hof B, van Horssen J et al (2017) Purinergic receptors P2Y12R and P2X7R: potential targets for PET imaging of microglia phenotypes in multiple sclerosis. J Neuroinflammation 14:259. https://doi.org/10.1186/s12974-017-1034-z
doi: 10.1186/s12974-017-1034-z pubmed: 29273052 pmcid: 5741931
Birgbauer E, Rao TS, Webb M (2004) Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. J Neurosci Res 78:157–166. https://doi.org/10.1002/jnr.20248
doi: 10.1002/jnr.20248 pubmed: 15378614
Bugiani M, Postma N, Polder E, Dieleman N, Scheffer PG, Sim FJ et al (2013) Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease. Brain 136:209–222. https://doi.org/10.1093/brain/aws320
doi: 10.1093/brain/aws320 pubmed: 23365098
Bugiani M, Dubey M, Breur M, Postma NL, Dekker MP, Ter Braak T et al (2017) Megalencephalic leukoencephalopathy with cysts: the Glialcam-null mouse model. Ann Clin Transl Neurol 4:450–465. https://doi.org/10.1002/acn3.405
doi: 10.1002/acn3.405 pubmed: 28695146 pmcid: 5497535
Bugiani M, Vuong C, Breur M, van der Knaap MS (2018) Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol 28:408–421. https://doi.org/10.1111/bpa.12606
doi: 10.1111/bpa.12606 pubmed: 29740943 pmcid: 8028328
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. https://doi.org/10.1038/nn.3599
doi: 10.1038/nn.3599 pubmed: 24316888
Calabrese B, Jones SL, Shiraishi-Yamaguchi Y, Lingelbach M, Manor U, Svitkina TM et al (2022) INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury. Nat Commun 13:6037. https://doi.org/10.1038/s41467-022-33268-y
doi: 10.1038/s41467-022-33268-y pubmed: 36229429 pmcid: 9558009
Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL et al (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20:1172–1179. https://doi.org/10.1038/nn.4593
doi: 10.1038/nn.4593 pubmed: 28671695 pmcid: 5529245
Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ et al (2020) Induced Pluripotent Stem cell (iPSC)-Based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25:2000. https://doi.org/10.3390/molecules25082000
doi: 10.3390/molecules25082000 pubmed: 32344649 pmcid: 7221979
Depla JA, Sogorb-Gonzalez M, Mulder LA, Heine VM, Konstantinova P, van Deventer SJ et al (2020) Cerebral organoids: a human model for AAV Capsid selection and therapeutic transgene efficacy in the brain. Mol Ther Methods Clin Dev 18:167–175. https://doi.org/10.1016/j.omtm.2020.05.028
doi: 10.1016/j.omtm.2020.05.028 pubmed: 32637448 pmcid: 7327852
Dooves S, Bugiani M, Postma NL, Polder E, Land N, Horan ST et al (2016) Astrocytes are central in the pathomechanisms of vanishing white matter. J Clin Invest 126:1512–1524. https://doi.org/10.1172/JCI83908
doi: 10.1172/JCI83908 pubmed: 26974157 pmcid: 4811153
Doss MX, Sachinidis A (2019) Current challenges of iPSC-Based Disease modeling and therapeutic implications. Cells 8:403. https://doi.org/10.3390/cells8050403
doi: 10.3390/cells8050403 pubmed: 31052294 pmcid: 6562607
Dubey M, Bugiani M, Ridder MC, Postma NL, Brouwers E, Polder E et al (2015) Mice with megalencephalic leukoencephalopathy with cysts: a developmental angle. Ann Neurol 77:114–131. https://doi.org/10.1002/ana.24307
doi: 10.1002/ana.24307 pubmed: 25382142
Eugene E, Cluzeaud F, Cifuentes-Diaz C, Fricker D, Le Duigou C, Clemenceau S et al (2014) An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J Neurosci Methods 235:234–244. https://doi.org/10.1016/j.jneumeth.2014.07.009
doi: 10.1016/j.jneumeth.2014.07.009 pubmed: 25064188 pmcid: 4426207
Garcia LM, Hacker JL, Sase S, Adang L, Almad A (2020) Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 146:105087. https://doi.org/10.1016/j.nbd.2020.105087
doi: 10.1016/j.nbd.2020.105087 pubmed: 32977022
Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM (2018) The Neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther 26:664–668. https://doi.org/10.1016/j.ymthe.2018.01.018
doi: 10.1016/j.ymthe.2018.01.018 pubmed: 29428298 pmcid: 5911151
Humpel C (2015) Organotypic brain slice cultures: a review. Neuroscience 305:86–98. https://doi.org/10.1016/j.neuroscience.2015.07.086
doi: 10.1016/j.neuroscience.2015.07.086 pubmed: 26254240
Hunt S, Leibner Y, Mertens EJ, Barros-Zulaica N, Kanari L, Heistek TS et al (2022) Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex. Cereb Cortex 33:2857–2878. https://doi.org/10.1093/cercor/bhac246
doi: 10.1093/cercor/bhac246 pmcid: 10016070
Jang S, Kim H, Kim HJ, Lee SK, Kim EW, Namkoong K et al (2018) Long-term culture of Organotypic hippocampal slice from old 3xTg-AD mouse: an ex vivo model of Alzheimer’s Disease. Psychiatry Investig 15:205–213. https://doi.org/10.30773/pi.2017.04.02
doi: 10.30773/pi.2017.04.02 pubmed: 29475217
Kim H, Kim E, Park M, Lee E, Namkoong K (2013) Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry 41:36–43. https://doi.org/10.1016/j.pnpbp.2012.11.004
doi: 10.1016/j.pnpbp.2012.11.004 pubmed: 23159795
Koeppen AH, Robitaille Y (2002) Pelizaeus-Merzbacher disease. J Neuropathol Exp Neurol 61:747–759. https://doi.org/10.1093/jnen/61.9.747
doi: 10.1093/jnen/61.9.747 pubmed: 12230321
Kramvis I, Mansvelder HD, Meredith RM (2018) Neuronal life after death: electrophysiologic recordings from neurons in adult human brain tissue obtained through surgical resection or postmortem. Handb Clin Neurol 150:319–333. https://doi.org/10.1016/B978-0-444-63639-3.00022-0
doi: 10.1016/B978-0-444-63639-3.00022-0 pubmed: 29496151
Leferink PS, Dooves S, Hillen AEJ, Watanabe K, Jacobs G, Gasparotto L et al (2019) Astrocyte subtype vulnerability in Stem Cell models of Vanishing White Matter. Ann Neurol 86:780–792. https://doi.org/10.1002/ana.25585
doi: 10.1002/ana.25585 pubmed: 31433864 pmcid: 6856690
Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R et al (2020) Cytosine and Adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 4:97–110. https://doi.org/10.1038/s41551-019-0501-5
doi: 10.1038/s41551-019-0501-5 pubmed: 31937940 pmcid: 6980783
Lo Presti V, Cornel AM, Plantinga M, Dunnebach E, Kuball J, Boelens JJ et al (2021) Efficient lentiviral transduction method to gene modify cord blood CD8(+) T cells for cancer therapy applications. Mol Ther Methods Clin Dev 21:357–368. https://doi.org/10.1016/j.omtm.2021.03.015
doi: 10.1016/j.omtm.2021.03.015 pubmed: 33898633 pmcid: 8056177
Luchetti S, Liere P, Pianos A, Verwer RWH, Sluiter A, Huitinga I et al (2023) Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson’s disease. Neurobiol Dis 183:106169. https://doi.org/10.1016/j.nbd.2023.106169
doi: 10.1016/j.nbd.2023.106169 pubmed: 37257664
Mathiesen SN, Lock JL, Schoderboeck L, Abraham WC, Hughes SM (2020) CNS transduction benefits of AAV-PHP.eB over AAV9 are dependent on Administration Route and Mouse strain. Mol Ther Methods Clin Dev 19:447–458. https://doi.org/10.1016/j.omtm.2020.10.011
doi: 10.1016/j.omtm.2020.10.011 pubmed: 33294493 pmcid: 7683292
Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32:5017–5023. https://doi.org/10.1523/JNEUROSCI.5384-11.2012
doi: 10.1523/JNEUROSCI.5384-11.2012 pubmed: 22496548 pmcid: 3336214
Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295. https://doi.org/10.1093/brain/awn109
doi: 10.1093/brain/awn109 pubmed: 18567623
Qi XR, Luchetti S, Verwer RWH, Sluiter AA, Mason MRJ, Zhou JN et al (2018) Alterations in the steroid biosynthetic pathways in the human prefrontal cortex in mood disorders: a post-mortem study. Brain Pathol 28:536–547. https://doi.org/10.1111/bpa.12548
doi: 10.1111/bpa.12548 pubmed: 28752602
Qi XR, Verwer RWH, Bao AM, Balesar RA, Luchetti S, Zhou JN et al (2019) Human brain slice culture: a useful Tool to Study Brain disorders and potential therapeutic compounds. Neurosci Bull 35:244–252. https://doi.org/10.1007/s12264-018-0328-1
doi: 10.1007/s12264-018-0328-1 pubmed: 30604279 pmcid: 6426918
Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A et al (2011) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205. https://doi.org/10.1038/ng.1027
doi: 10.1038/ng.1027 pubmed: 22197934 pmcid: 3267847
Ravi VM, Joseph K, Wurm J, Behringer S, Garrelfs N, d’Errico P et al (2019) Human organotypic brain slice culture: a novel framework for environmental research in neuro-oncology. Life Sci Alliance 2. https://doi.org/10.26508/lsa.201900305
Rosin JM, Marsters CM, Malik F, Far R, Adnani L, Schuurmans C et al (2021) Embryonic microglia interact with Hypothalamic Radial Glia during Development and Upregulate the TAM receptors MERTK and AXL following an insult. Cell Rep 34:108587. https://doi.org/10.1016/j.celrep.2020.108587
doi: 10.1016/j.celrep.2020.108587 pubmed: 33406432
Schwarz N, Hedrich UBS, Schwarz H, Dammeier PAH, Auffenberg N E et al (2017) Human cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Sci Rep 7:12249. https://doi.org/10.1038/s41598-017-12527-9
doi: 10.1038/s41598-017-12527-9 pubmed: 28947761 pmcid: 5613008
Sherman LS, Back SA (2008) A ‘GAG’ reflex prevents repair of the damaged CNS. Trends Neurosci 31:44–52. https://doi.org/10.1016/j.tins.2007.11.001
doi: 10.1016/j.tins.2007.11.001 pubmed: 18063497
Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E et al (2013) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136:147–167. https://doi.org/10.1093/brain/aws262
doi: 10.1093/brain/aws262 pubmed: 23266461
Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107:11555–11560. https://doi.org/10.1073/pnas.1006496107
doi: 10.1073/pnas.1006496107 pubmed: 20534434 pmcid: 2895128
Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182. https://doi.org/10.1016/0165-0270(91)90128-m
doi: 10.1016/0165-0270(91)90128-m pubmed: 1715499
Strawn JR, Ekhator NN, Geracioti TD Jr (2001) In-use stability of monoamine metabolites in human cerebrospinal fluid. J Chromatogr B Biomed Sci Appl 760:301–306. https://doi.org/10.1016/s0378-4347(01)00290-0
doi: 10.1016/s0378-4347(01)00290-0 pubmed: 11530989
Ting JT, Kalmbach B, Chong P, de Frates R, Keene CD, Gwinn RP et al (2018) A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci Rep 8:8407. https://doi.org/10.1038/s41598-018-26803-9
doi: 10.1038/s41598-018-26803-9 pubmed: 29849137 pmcid: 5976666
van der Knaap MS, Bugiani M (2017) Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 134:351–382. https://doi.org/10.1007/s00401-017-1739-1
doi: 10.1007/s00401-017-1739-1 pubmed: 28638987 pmcid: 5563342
Verwer RW, Hermens WT, Dijkhuizen P, ter Brake O, Baker RE, Salehi A et al (2002) Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J 16:54–60. https://doi.org/10.1096/fj.01-0504com
doi: 10.1096/fj.01-0504com pubmed: 11772936
Verwer RW, Baker RE, Boiten EF, Dubelaar EJ, van Ginkel CJ, Sluiter AA et al (2003) Post-mortem brain tissue cultures from elderly control subjects and patients with a neurodegenerative disease. Exp Gerontol 38:167–172. https://doi.org/10.1016/s0531-5565(02)00154-7
doi: 10.1016/s0531-5565(02)00154-7 pubmed: 12543274
Wisse LE, Penning R, Zaal EA, van Berkel CGM, Ter Braak TJ, Polder E et al (2017) Proteomic and metabolomic analyses of vanishing White Matter mouse astrocytes reveal deregulation of ER functions. Front Cell Neurosci 11:411. https://doi.org/10.3389/fncel.2017.00411
doi: 10.3389/fncel.2017.00411 pubmed: 29375313 pmcid: 5770689
Wolf NI, Breur M, Plug B, Beerepoot S, Westerveld ASR, van Rappard DF et al (2020) Metachromatic leukodystrophy and transplantation: remyelination, no cross-correction. Ann Clin Transl Neurol 7:169–180. https://doi.org/10.1002/acn3.50975
doi: 10.1002/acn3.50975 pubmed: 31967741 pmcid: 7034505
Yong Y, Hunter-Chang S, Stepanova E, Deppmann C (2021) Axonal spheroids in neurodegeneration. Mol Cell Neurosci 117:103679. https://doi.org/10.1016/j.mcn.2021.103679
doi: 10.1016/j.mcn.2021.103679 pubmed: 34678457 pmcid: 8742877
Zhang H, Jarjour AA, Boyd A, Williams A (2011) Central nervous system remyelination in culture–a tool for multiple sclerosis research. Exp Neurol 230:138–148. https://doi.org/10.1016/j.expneurol.2011.04.009
doi: 10.1016/j.expneurol.2011.04.009 pubmed: 21515259 pmcid: 3117145
Zhang L, Verwer RWH, van Heerikhuize J, Lucassen PJ, Nathanielsz PW, Hol EM et al (2024) Progesterone receptor distribution in the human hypothalamus and its association with suicide. Acta Neuropathol Commun 12:16. https://doi.org/10.1186/s40478-024-01733-y
doi: 10.1186/s40478-024-01733-y pubmed: 38263257 pmcid: 10807127

Auteurs

Bonnie C Plug (BC)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.

Ilma M Revers (IM)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.

Marjolein Breur (M)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.

Gema Muñoz González (GM)

Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands.

Jaap A Timmerman (JA)

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.

Niels R C Meijns (NRC)

Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands.

Daniek Hamberg (D)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.

Jikke Wagendorp (J)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.

Erik Nutma (E)

Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.

Nicole I Wolf (NI)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.

Antonio Luchicchi (A)

Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands.

Huibert D Mansvelder (HD)

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.

Niek P van Til (NP)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.

Marjo S van der Knaap (MS)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.

Marianna Bugiani (M)

Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands. m.bugiani@amsterdamumc.nl.
Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands. m.bugiani@amsterdamumc.nl.
Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands. m.bugiani@amsterdamumc.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH