Withanolides production by the endophytic fungus Penicillium oxalicum associated with Withania somnifera (L.) Dunal.
Withania somnifera
Acetylcholinesterase inhibitory activity
Antibacterial activity
Antioxidant activity
Endophytic fungi
Withanolides
Journal
World journal of microbiology & biotechnology
ISSN: 1573-0972
Titre abrégé: World J Microbiol Biotechnol
Pays: Germany
ID NLM: 9012472
Informations de publication
Date de publication:
28 May 2024
28 May 2024
Historique:
received:
01
04
2024
accepted:
08
05
2024
medline:
28
5
2024
pubmed:
28
5
2024
entrez:
27
5
2024
Statut:
epublish
Résumé
Withanolides are steroidal lactones with diverse bioactive potential and their production from plant sources varies with genotype, age, culture conditions, and geographical region. Endophytic fungi serve as an alternative source to produce withanolides, like their host plant, Withania somnifera (L.) Dunal. The present study aimed to isolate endophytic fungi capable of producing withanolides, characterization and investigation of biological activities of these molecules. The methanolic fungal crude extract of one of the fungal isolates WSE16 showed maximum withanolide production (219 mg/L). The fungal isolate WSE16 was identified as Penicillium oxalicum based on its morphological and internal transcribed spacer (ITS) sequence analysis and submitted in NCBI (accession number OR888725). The methanolic crude extract of P. oxalicum was further purified by column chromatography, and collected fractions were assessed for the presence of withanolides. Fractions F3 and F4 showed a higher content of withanolides (51.8 and 59.1 mg/L, respectively) than other fractions. Fractions F3 and F4 exhibited antibacterial activity against Staphylococcus aureus with an IC
Identifiants
pubmed: 38802663
doi: 10.1007/s11274-024-04017-8
pii: 10.1007/s11274-024-04017-8
doi:
Substances chimiques
Withanolides
0
Antioxidants
0
Anti-Bacterial Agents
0
Cholinesterase Inhibitors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
215Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Ahmad S, Yasmin R, Malik A (1999) New withanolide glycosides from Physalis peruviana L. Chem Pharm Bull 47(4):477–480. https://doi.org/10.1248/cpb.47.477
doi: 10.1248/cpb.47.477
Alali FQ, Amrine CSM, El-Elimat T, Alkofahi A, Tawaha K, Gharaibah M, Swanson SM, Falkinham JO III, Cabeza M, Sanchez A, Figueroa M, Oberlies NH (2014) Bioactive withanolides from Withania obtusifolia. Phytochem Lett 9:96–101. https://doi.org/10.1016/j.phytol.2014.05.002
doi: 10.1016/j.phytol.2014.05.002
Aoyama A, Kurane R, Matsuura A, Nagai K (2015) Newly isolated Penicillium oxalicum A592–4B secretes enzymes that degrade milled rice straw with high efficiency. Biosci Biotechnol Biochem 79(5):820–829. https://doi.org/10.1080/09168451.2014.993913
doi: 10.1080/09168451.2014.993913
pubmed: 25586551
Ashrafian H, Zadeh EH, Khan RH (2021) Review on Alzheimer’s disease: inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 167:382–394. https://doi.org/10.1016/j.ijbiomac.2020.11.192
doi: 10.1016/j.ijbiomac.2020.11.192
pubmed: 33278431
Bhadra F, Gupta A, Vasundhara M, Reddy M (2022) Endophytic fungi: a potential source of industrial enzyme products. 3 Biotech. 12:86. https://doi.org/10.1007/s13205-022-03145-y
doi: 10.1007/s13205-022-03145-y
pubmed: 35273898
pmcid: 8894535
Bhagat J, Kaur A, Kaur R, Yadav AK, Sharma V, Chadha BS (2016) Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification, and characterization. J Appl Microbiol 121(4):1015–1025. https://doi.org/10.1111/jam.13192
doi: 10.1111/jam.13192
pubmed: 27248836
Bharty MK, Dani RK, Kushawaha SK, Prakash O, Singh RK, Sharma VK, Kharwas RN, Singh NK (2015) Synthesis, spectral characterization, thermal behaviour, antibacterial activity and DFT calculation on N′-[bis (methylsulfanyl) methylene]-2-hydroxybenzohydrazide and N′-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester. Spectrochim Acta a: Mol Biomol Spectrosc 145:98–109. https://doi.org/10.1016/j.saa.2015.02.05
doi: 10.1016/j.saa.2015.02.05
pubmed: 25767993
Bhattacharya A, Ghosal S, Bhattacharya SK (2001) Antioxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 74(1):1–6. https://doi.org/10.1016/S0378-8741(00)00309-3
doi: 10.1016/S0378-8741(00)00309-3
pubmed: 11137343
Boyanova L, Gergova G, Nikolov R, Derejian S, Lazarova E, Katsarov N, Mitov I, Krastev Z (2005) Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J Med Microbiol 54(5):481–483. https://doi.org/10.1099/jmm.0.45880-0
doi: 10.1099/jmm.0.45880-0
pubmed: 15824428
Chauhan S, Joshi A, Jain R, Jain D (2019) Estimation of withanolide A in diverse genotypes of Ashwagandha Withania somnifera (L.)Dunal. Indian J Exp Biol 57(3):212–217 ( http://nopr.niscpr.res.in/handle/123456789/45909 )
Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep 31:1889–1897. https://doi.org/10.1007/s00299-012-1302-4
doi: 10.1007/s00299-012-1302-4
pubmed: 22733207
Chaves N, Santiago A, Alías JC (2020) Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used. Antioxidants (basel) 9(1):76
doi: 10.3390/antiox9010076
pubmed: 31952329
Dubey S, Kallubai M, Subramanyam R (2021) Improving the inhibition of β-amyloid aggregation by withanolide and withanoside derivatives. Int J Biol Macromol 173:56–65. https://doi.org/10.1016/j.ijbiomac.2021.01.094
doi: 10.1016/j.ijbiomac.2021.01.094
pubmed: 33465364
Gautam M, Diwanay SS, Gairola S, Shinde YS, Jadhav SS, Patwardhan BK (2004) Immune response modulation to DPT vaccine by aqueous extract of Withania somnifera in experimental system. Int Immunopharmacol 4(6):841–849. https://doi.org/10.1016/j.intimp.2004.03.005
doi: 10.1016/j.intimp.2004.03.005
pubmed: 15135324
Ghosal S (2000) U.S. Patent No. 6, 153,198. U.S. Patent and Trademark Office, Washington, DC
Gill H, Vasundhara M (2019) Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J Microbiol Biotechnol 35(74):1–8. https://doi.org/10.1007/s11274-019-2651-8
doi: 10.1007/s11274-019-2651-8
Gupta A, Vasundhara M, Singh A, Kharwar RN (2021) Developments in Endophytic Fungal Research in India. In: Satyanarayana T, Deshmukh SK, Deshpande MV (eds) Mycol Prog. Springer, Singapore, pp 249–275. https://doi.org/10.1007/978-981-16-2350-9_9
doi: 10.1007/978-981-16-2350-9_9
Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron 60(13):3109–3121. https://doi.org/10.1016/j.tet.2004.01.016
doi: 10.1016/j.tet.2004.01.016
Kalaiselvi V, Binu TV, Radha SR (2016) Preliminary phytochemical analysis of the various leaf extracts of Mimusops elengi L. South Ind J Biol Sci 2:24–29
Kang K, Wang S, Lai G, Liu G, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:1–9. https://doi.org/10.1186/1472-6750-13-42
doi: 10.1186/1472-6750-13-42
Klimek-Ochab M, Lejczak B, Forlani G (2003) A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source. FEMS Microbiol Lett 222(2):205–209. https://doi.org/10.1016/S0378-1097(03)00301-X
doi: 10.1016/S0378-1097(03)00301-X
pubmed: 12770709
Kumar S, Bouic PJ, Rosenkranz B (2021) Investigation of CYP2B6, 3A4 and β-esterase interactions of withania somnifera (L.) dunal in human liver microsomes and HepG2 cells. J Ethnopharmacol 270:113766. https://doi.org/10.1016/j.jep.2020.113766
doi: 10.1016/j.jep.2020.113766
pubmed: 33395575
Lalhminghlui K, Jagetia GC (2018) Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Sachima wallichii Korth in vitro. Future Sci. OA 4(2):FSO272. https://doi.org/10.4155/fsoa-2017-0086
doi: 10.4155/fsoa-2017-0086
pubmed: 29379645
pmcid: 5778377
Laraia L, Robke L, Waldmann H (2018) Bioactive compound collections: from design to target identification. Chem 4:705–730. https://doi.org/10.1016/j.chempr.2018.01.012
doi: 10.1016/j.chempr.2018.01.012
Liu Y (2022) In silico evaluation of pharmacokinetics and acute toxicity of withanolides in Ashawagandha. Phytochem Lett 47:130–135. https://doi.org/10.1016/j.phytol.2021.12.007
doi: 10.1016/j.phytol.2021.12.007
Madhu S, Komala M, Pandian P (2019) Isolation and identification of withaferin A (Steroidal Lactone) from Withania somnifera (Ashwagandha). Drug Invent Today 11(3).
Mishra SP, Singh S, Mahfooz A, Bhattacharya N, Mishra PA, Shirke Nautiyal CS (2018) Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiol Res 212:17–28. https://doi.org/10.1016/j.micres.2018.04.006
doi: 10.1016/j.micres.2018.04.006
pubmed: 29853165
Murugan R, Subramaniyan S, Priya S, Ragavendran C, Arasu MV, Al-Dhabi NA, Choi KC, Guru A, Arockiaraj J (2023) Bacterial clearance and anti-inflammatory effect of Withaferin A against human pathogen of Staphylococcus aureus in infected zebrafish. Aquat Toxicol 260:106578. https://doi.org/10.1016/j.aquatox.2023.106578
doi: 10.1016/j.aquatox.2023.106578
pubmed: 37244123
Nallasamy P, Ramalingam T, Nooruddin T, Shanmuganathan R, Arivalagan P, Natarajan S (2020) Polyherbal drug loaded starch nanoparticles as promising drug delivery system: anti-microbial, antibiofilm and neuroprotective studies. Process Biochem 92:355–364. https://doi.org/10.1016/j.procbio.2020.01.026
doi: 10.1016/j.procbio.2020.01.026
Njoku VO, Obi C (2009) Phytochemical constituents of some selected medicinal plants. Afr J Pure Appl Chem 3(11):228–233
Owais M, Sharad KS, Shehbaz A, Saleemuddin M (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12(3):229–235. https://doi.org/10.1016/j.procbio.2020.01.026
doi: 10.1016/j.procbio.2020.01.026
pubmed: 15830846
Pal A, Kumar M, Saharan V, Bhushan B (2015) Antioxidant and free radical scavenging activity of ashwagandha (Withania somnifera L.) leaves. J Global Biosci 4(1):1127–1137
Pareek N, Vivekanand V, Dwivedi P, Singh RP (2011) Penicillium oxalicum SAEM-51: a mutagenised strain for enhanced production of chitin deacetylase for bioconversion to chitosan. N Biotechnol 28(2):118–124. https://doi.org/10.1016/j.nbt.2010.09.009
doi: 10.1016/j.nbt.2010.09.009
pubmed: 20920617
Sabuquillo P, Cal AD, Melgarejo P (2006) Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biol Control 37(3):256–265. https://doi.org/10.1016/j.biocontrol.2006.02.009
doi: 10.1016/j.biocontrol.2006.02.009
Santamarina MP, Roselló J, Llacer R, Sanchis V (2002) Antagonistic activity of Penicillium oxalicum corrie and thom, Penicillium decumbens thom and Trichoderma harzianum Rifai isolates against fungi, bacteria, and insects in vitro. Rev Iberoam Micol 19(2):99–103
pubmed: 12828512
Sathiyabama M, Parthasarathy R (2018) Withanolide production by fungal endophyte isolated from Withania somnifera. Nat Prod Res 32:1573–1577. https://doi.org/10.1080/14786419.2017.1389934
doi: 10.1080/14786419.2017.1389934
pubmed: 29034745
Sharma L, Maurya B, Rai SP (2023) An overview of biotechnological interventions and abiotic elicitors on biomass and withanolide biosynthesis in withania somnifera (L.) Dunal. Ind Crops and Prod 193:116238. https://doi.org/10.1016/j.indcrop.2023.116238
doi: 10.1016/j.indcrop.2023.116238
Singh A, Singh DK, Kharwar RN, White JF, Gond SK (2021) Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery:Insights, avenues, and challenges. Microorganisms 9(1):197. https://doi.org/10.3390/microorganisms9010197
doi: 10.3390/microorganisms9010197
pubmed: 33477910
pmcid: 7833388
Tewari V, Chander A, Dhyani S, Sahu P, Gupta P, Patni LS, Kalick A, Bishayee (2022) Withania somnifera (L) dunal: phytochemistry, structure-activity relationship, and anti-cancer potential. Phytomedicine 98:153949. https://doi.org/10.1016/j.phymed.2022.153949
doi: 10.1016/j.phymed.2022.153949
pubmed: 35151215
Thorat SA, Poojari P, Kaniyassery A, Kiran KR, Satyamoorthy K, Mahato KK, Muthusamy A (2021) Red laser-mediated alterations in seed germination, growth, pigments and withanolide content of ashwagandha [withania somnifera (L.) Dunal]. J Photochem Photobiol B Biol 216:112144. https://doi.org/10.1016/j.jphotobiol.2021.112144
doi: 10.1016/j.jphotobiol.2021.112144
Tomar V, Das N, Chauhan H, Roy P, Sircar D (2021) Closed polybag foliar methyl-jasmonate treatment: new technology for rapid enhancement of bioactive withanolide biosynthesis in field-grown plants of Withania somnifera. Ind Crops Prod 162:113262. https://doi.org/10.1016/j.indcrop.2021.113262
doi: 10.1016/j.indcrop.2021.113262
Varghese S, Akshaya CS, Jisha MS (2021) Unravelling the bioprospects of mycoendophytes residing in Withania somnifera for productive pharmaceutical applications. Biocatal Agric Biotechnol 37:102172. https://doi.org/10.1016/j.bcab.2021.102172
doi: 10.1016/j.bcab.2021.102172
Vasundhara M, Baranwal M, Sivaramaiah N, Kumar A (2017) Isolation and characterisation of trichalasin-producing endophytic fungus from Taxus baccata. Ann Microbiol 67:255–261. https://doi.org/10.1007/s13213-017-1256-4
doi: 10.1007/s13213-017-1256-4
Vijayan S, Divya K, George TK, Jisha MS (2016) Biogenic synthesis of silver nanoparticles using endophytic fungi fusarium oxysporum isolated from withania somnifera (L.), its antibacterial and cytotoxic activity. J Bionanoscience 10(5):369–376. https://doi.org/10.1166/jbns.2016.1390
doi: 10.1166/jbns.2016.1390
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds) PCR protocols. Academic Press, London, pp 315–322
Yadav G, Meena M (2021) Bioprospecting of endophytes in medicinal plants of thar desert: an attractive resource for biopharmaceuticals. Biotechnol Rep 30:e00629. https://doi.org/10.1016/j.btre.2021.e00629
doi: 10.1016/j.btre.2021.e00629
Yang L, Xie J, Jiang D, Fu Y, Li G, Lin F (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915. https://doi.org/10.1007/s11274-007-9626-x
doi: 10.1007/s11274-007-9626-x
Yang BY, Xia YG, Pan J, Liu Y, Wang QH, Kuang HX (2016) Phytochemistry and biosynthesis of δ-lactone withanolides. Phytochem Rev 15:771–797. https://doi.org/10.1007/s11101-015-9420-6
doi: 10.1007/s11101-015-9420-6
Yuan Y, Xu F, Yao J, Hu Y, Wang J, Zhao T, Zhou Y, Gao J (2018) Cloning, expression and biochemical characterization of a GH1 β-glucosidase from Cellulosimicrobium cellulans. Biocatal 36(5):362–371. https://doi.org/10.1080/10242422.2017.1395415
doi: 10.1080/10242422.2017.1395415
Zahiruddin S, Basist P, Parveen A, Parveen R, Khan W, Ahmad S (2020) Ashwagandha in brain disorders: a review of recent developments. J Ethnopharmacol 257:112876. https://doi.org/10.1016/j.jep.2020.112876
doi: 10.1016/j.jep.2020.112876
pubmed: 32305638
Zhang P, Zhou PP, Jiang C, Yu H, Yu LJ (2008) Screening of taxol-producing fungi based on PCR amplification from Taxus. Biotechnol Lett 30:2119–2123. https://doi.org/10.1007/s10529-008-9801-7
doi: 10.1007/s10529-008-9801-7
pubmed: 18709488