Evolutionary dynamics of canine kobuvirus in Vietnam and Thailand reveal the evidence of viral ability to evade host immunity.
B-cell epitope predictions
Canine kobuvirus
Phylogenetic tree
Selective pressure analysis
Thailand
Vietnam
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 May 2024
27 May 2024
Historique:
received:
15
02
2024
accepted:
21
05
2024
medline:
28
5
2024
pubmed:
28
5
2024
entrez:
27
5
2024
Statut:
epublish
Résumé
Canine kobuvirus (CaKoV) is a pathogen associated with canine gastrointestinal disease (GID). This study examined 327 rectal swabs (RS), including 113 from Vietnam (46 healthy, 67 with GID) and 214 from Thailand (107 healthy and 107 with GID). CaKoV was detected in both countries, with prevalences of 28.3% (33/113) in Vietnam and 7.9% (17/214) in Thailand. Additionally, CaKoV was found in both dogs with diarrhea and healthy dogs. CaKoV was mainly found in puppies under six months of age (30.8%). Co-detection with other canine viruses were also observed. The complete coding sequence (CDS) of nine Vietnamese and four Thai CaKoV strains were characterized. Phylogenetic analysis revealed a close genetic relationship between Vietnamese and Thai CaKoV strains, which were related to the Chinese strains. CDS analysis indicated a distinct lineage for two Vietnamese CaKoV strains. Selective pressure analysis on the viral capsid (VP1) region showed negative selection, with potential positive selection sites on B-cell epitopes. This study, the first of its kind in Vietnam, provides insights into CaKoV prevalence in dogs of different ages and healthy statuses, updates CaKoV occurrence in Thailand, and sheds light on its molecular characteristics and immune evasion strategies.
Identifiants
pubmed: 38802579
doi: 10.1038/s41598-024-62833-2
pii: 10.1038/s41598-024-62833-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12037Subventions
Organisme : National Research Council of Thailand (NRCT): R. Thanawongnuwech NRCT Senior scholar 2022
ID : N42A650553
Organisme : Thailand Science research and Innovation Fund Chulalongkorn University
ID : HEAF67310040
Informations de copyright
© 2024. The Author(s).
Références
Kapoor, A. et al. Characterization of a canine homolog of human Aichivirus. J. Virol. 85, 11520–11525. https://doi.org/10.1128/JVI.05317-11 (2011).
doi: 10.1128/JVI.05317-11
pubmed: 21880761
pmcid: 3194941
Li, L. et al. Viruses in diarrhoeic dogs include novel kobuviruses and sapoviruses. J. Gen. Virol. 92, 2534–2541. https://doi.org/10.1099/vir.0.034611-0 (2011).
doi: 10.1099/vir.0.034611-0
pubmed: 21775584
pmcid: 3352364
Khamrin, P., Maneekarn, N., Okitsu, S. & Ushijima, H. Epidemiology of human and animal kobuviruses. Virusdisease 25, 195–200. https://doi.org/10.1007/s13337-014-0200-5 (2014).
doi: 10.1007/s13337-014-0200-5
pubmed: 25674585
pmcid: 4188179
Caddy, S. L. New viruses associated with canine gastroenteritis. Vet. J. 232, 57–64. https://doi.org/10.1016/j.tvjl.2017.12.009 (2018).
doi: 10.1016/j.tvjl.2017.12.009
pubmed: 29428093
Decaro, N. Enteric viruses of dogs. Adv. Small Anim. Care. 1, 143–160. https://doi.org/10.1016/j.yasa.2020.07.012 (2020).
doi: 10.1016/j.yasa.2020.07.012
Yamashita, T. et al. Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J. Virol. 72, 8408–8412. https://doi.org/10.1128/JVI.72.10.8408-8412.1998 (1998).
doi: 10.1128/JVI.72.10.8408-8412.1998
pubmed: 9733894
pmcid: 110230
Yamashita, T. et al. Isolation and characterization of a new species of kobuvirus associated with cattle. J. Gen. Virol. 84, 3069–3077. https://doi.org/10.1099/vir.0.19266-0 (2003).
doi: 10.1099/vir.0.19266-0
pubmed: 14573811
Reuter, G., Boldizsar, A. & Pankovics, P. Complete nucleotide and amino acid sequences and genetic organization of porcine kobuvirus, a member of a new species in the genus Kobuvirus, family Picornaviridae. Arch. Virol. 154, 101–108. https://doi.org/10.1007/s00705-008-0288-2 (2009).
doi: 10.1007/s00705-008-0288-2
pubmed: 19096904
Chang, J. T., Chen, Y. S., Chen, B. C., Chao, D. & Chang, T. H. Complete genome sequence of the first aichi virus isolated in taiwan. Genome Announc. 1, e00107-00112. https://doi.org/10.1128/genomeA.00107-12 (2013).
doi: 10.1128/genomeA.00107-12
pubmed: 23405311
pmcid: 3569300
Yamashita, T. et al. Isolation of cytopathic small round viruses with BS-Cl cells from patients with gastroenteritis. J. Infect. Dis. 164, 954–957. https://doi.org/10.1093/infdis/164.5.954 (1991).
doi: 10.1093/infdis/164.5.954
pubmed: 1658159
Phan, T. G. et al. The fecal viral flora of wild rodents. PLoS Pathog. 7, e1002218. https://doi.org/10.1371/journal.ppat.1002218 (2011).
doi: 10.1371/journal.ppat.1002218
pubmed: 21909269
pmcid: 3164639
Ng, T. F. et al. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J. Virol. 86, 12161–12175. https://doi.org/10.1128/JVI.00869-12 (2012).
doi: 10.1128/JVI.00869-12
pubmed: 22933275
pmcid: 3486453
Pankovics, P., Boros, A., Kiss, T. & Reuter, G. Identification and complete genome analysis of kobuvirus in faecal samples of European roller (Coracias garrulus): For the first time in a bird. Arch. Virol. 160, 345–351. https://doi.org/10.1007/s00705-014-2228-7 (2015).
doi: 10.1007/s00705-014-2228-7
pubmed: 25195063
Chung, J. Y. et al. Detection and genetic characterization of feline kobuviruses. Virus Genes 47, 559–562. https://doi.org/10.1007/s11262-013-0953-8 (2013).
doi: 10.1007/s11262-013-0953-8
pubmed: 23963764
pmcid: 7088707
Reuter, G., Boros, Á. & Pankovics, P. Kobuviruses–a comprehensive review. Rev. Med. Virol. 21, 32–41. https://doi.org/10.1002/rmv.677 (2011).
doi: 10.1002/rmv.677
pubmed: 21294214
Sasaki, J., Nagashima, S. & Taniguchi, K. Aichi virus leader protein is involved in viral RNA replication and encapsidation. J. Virol. 77, 10799–10807. https://doi.org/10.1128/jvi.77.20.10799-10807.2003 (2003).
doi: 10.1128/jvi.77.20.10799-10807.2003
pubmed: 14512530
pmcid: 224959
Hughes, P. J. & Stanway, G. The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J. Gen. Virol. 81, 201–207. https://doi.org/10.1099/0022-1317-81-1-201 (2000).
doi: 10.1099/0022-1317-81-1-201
pubmed: 10640559
Sasaki, J. & Taniguchi, K. Aichi virus 2A protein is involved in viral RNA replication. J. Virol. 82, 9765–9769. https://doi.org/10.1128/JVI.01051-08 (2008).
doi: 10.1128/JVI.01051-08
pubmed: 18653460
pmcid: 2546980
Di Martino, B., Di Felice, E., Ceci, C., Di Profio, F. & Marsilio, F. Canine kobuviruses in diarrhoeic dogs in Italy. Vet. Microbiol. 166, 246–249. https://doi.org/10.1016/j.vetmic.2013.05.007 (2013).
doi: 10.1016/j.vetmic.2013.05.007
pubmed: 23806200
pmcid: 7117211
Carmona-Vicente, N. et al. Phylogeny and prevalence of kobuviruses in dogs and cats in the UK. Vet. Microbiol. 164, 246–252. https://doi.org/10.1016/j.vetmic.2013.02.014 (2013).
doi: 10.1016/j.vetmic.2013.02.014
pubmed: 23490561
pmcid: 7127238
Kong, N. et al. Molecular characterization of new described kobuvirus in dogs with diarrhea in China. Springerplus 5, 2047. https://doi.org/10.1186/s40064-016-3738-4 (2016).
doi: 10.1186/s40064-016-3738-4
pubmed: 27995024
pmcid: 5130936
Li, C. et al. Prevalence and phylogenetic analysis of canine kobuviruses in diarrhoetic dogs in northeast China. J. Vet. Med. Sci. 78, 7–11. https://doi.org/10.1292/jvms.15-0414 (2016).
doi: 10.1292/jvms.15-0414
pubmed: 26256044
Liu, D. et al. Emerging of canine kobuvirus in dogs in China, 2015. Pol. J. Vet. Sci. 2017, 20. https://doi.org/10.1515/pjvs-2017-0088 (2017).
doi: 10.1515/pjvs-2017-0088
Wang, Y. et al. Identification and full-genome sequencing of canine kobuvirus in canine fecal samples collected from Anhui Province, eastern China. Arch. Virol. 165, 2495–2501. https://doi.org/10.1007/s00705-020-04773-6 (2020).
doi: 10.1007/s00705-020-04773-6
pubmed: 32776176
pmcid: 7415332
Choi, S. et al. Phylogenetic analysis of astrovirus and kobuvirus in Korean dogs. J. Vet. Med. Sci. 76, 1141–1145. https://doi.org/10.1292/jvms.13-0585 (2014).
doi: 10.1292/jvms.13-0585
pubmed: 24784439
pmcid: 4155196
Oem, J. K., Choi, J. W., Lee, M. H., Lee, K. K. & Choi, K. S. Canine kobuvirus infections in Korean dogs. Arch. Virol. 159, 2751–2755. https://doi.org/10.1007/s00705-014-2136-x (2014).
doi: 10.1007/s00705-014-2136-x
pubmed: 24906525
pmcid: 7086924
Soma, T., Matsubayashi, M. & Sasai, K. Detection of kobuvirus RNA in Japanese domestic dogs. J. Vet. Med. Sci. 78, 1731–1735. https://doi.org/10.1292/jvms.16-0217 (2016).
doi: 10.1292/jvms.16-0217
pubmed: 27488907
pmcid: 5138431
Charoenkul, K. et al. First detection and genetic characterization of canine Kobuvirus in domestic dogs in Thailand. BMC Vet. Res. 15, 254. https://doi.org/10.1186/s12917-019-1994-6 (2019).
doi: 10.1186/s12917-019-1994-6
pubmed: 31324182
pmcid: 6642606
Miyabe, F. M., Ribeiro, J., Alfieri, A. F. & Alfieri, A. A. Detection of canine kobuvirus RNA in diarrheic fecal samples of dogs with parvoviruses. Braz. J. Microbiol. 50, 871–874. https://doi.org/10.1007/s42770-019-00095-1 (2019).
doi: 10.1007/s42770-019-00095-1
pubmed: 31140097
pmcid: 6863268
Kaiser, F. K. et al. Detection of systemic canine kobuvirus infection in peripheral tissues and the central nervous system of a fox infected with canine distemper virus. Microorganisms 9, 2521. https://doi.org/10.3390/microorganisms9122521 (2021).
doi: 10.3390/microorganisms9122521
pubmed: 34946122
pmcid: 8705045
Caddy, S. L. & Goodfellow, I. Complete genome sequence of canine astrovirus with molecular and epidemiological characterisation of UK strains. Vet. Microbiol. 177, 206–213. https://doi.org/10.1016/j.vetmic.2015.03.011 (2015).
doi: 10.1016/j.vetmic.2015.03.011
pubmed: 25818578
pmcid: 4401448
Ribeiro, J. et al. Extra-intestinal detection of canine kobuvirus in a puppy from Southern Brazil. Arch. Virol. 162, 867–872. https://doi.org/10.1007/s00705-016-3164-5 (2017).
doi: 10.1007/s00705-016-3164-5
pubmed: 27888408
Lukashev, A. N. et al. Genetic variation and recombination in Aichi virus. J. Gen. Virol. 93, 1226–1235. https://doi.org/10.1099/vir.0.040311-0 (2012).
doi: 10.1099/vir.0.040311-0
pubmed: 22377582
Deng, B. et al. Detection and genetic characterization of canine kobuvirus from stray dogs in Shanghai, China. Arch. Virol. 168, 112. https://doi.org/10.1007/s00705-023-05710-z (2023).
doi: 10.1007/s00705-023-05710-z
pubmed: 36918497
pmcid: 10013983
Reuter, G., Boldizsar, A., Papp, G. & Pankovics, P. Detection of Aichi virus shedding in a child with enteric and extraintestinal symptoms in Hungary. Arch. Virol. 154, 1529–1532. https://doi.org/10.1007/s00705-009-0473-y (2009).
doi: 10.1007/s00705-009-0473-y
pubmed: 19669615
Sdiri-Loulizi, K. et al. Detection and genomic characterization of Aichi viruses in stool samples from children in Monastir, Tunisia. J. Clin. Microbiol. 47, 2275–2278. https://doi.org/10.1128/JCM.00913-09 (2009).
doi: 10.1128/JCM.00913-09
pubmed: 19474269
pmcid: 2708530
Kaikkonen, S., Rasanen, S., Ramet, M. & Vesikari, T. Aichi virus infection in children with acute gastroenteritis in Finland. Epidemiol. Infect. 138, 1166–1171. https://doi.org/10.1017/S0950268809991300 (2010).
doi: 10.1017/S0950268809991300
pubmed: 19961643
Drexler, J. F. et al. Aichi virus shedding in high concentrations in patients with acute diarrhea. Emerg. Infect. Dis. 17, 1544–1548. https://doi.org/10.3201/eid1708.101556 (2011).
doi: 10.3201/eid1708.101556
pubmed: 21801647
pmcid: 3381558
Wang, Z. et al. Epidemiological and phylogenetic analysis of canine kobuviruses in Tangshan. China. Arch. Virol. 165, 2317–2322. https://doi.org/10.1007/s00705-020-04727-y (2020).
doi: 10.1007/s00705-020-04727-y
pubmed: 32643035
Li, M. et al. Prevalence and genome characteristics of canine astrovirus in southwest China. J. Gen. Virol. 99, 880–889. https://doi.org/10.1099/jgv.0.001077 (2018).
doi: 10.1099/jgv.0.001077
pubmed: 29846155
Zhu, L. et al. Structure of human Aichi virus and implications for receptor binding. Nat. Microbiol. 1, 16150. https://doi.org/10.1038/nmicrobiol.2016.150 (2016).
doi: 10.1038/nmicrobiol.2016.150
pubmed: 27595320
Adzhubei, A. A., Sternberg, M. J. & Makarov, A. A. Polyproline-II helix in proteins: Structure and function. J. Mol. Biol. 425, 2100–2132. https://doi.org/10.1016/j.jmb.2013.03.018 (2013).
doi: 10.1016/j.jmb.2013.03.018
pubmed: 23507311
Berisio, R. & Vitagliano, L. Polyproline and triple helix motifs in host-pathogen recognition. Curr. Protein. Pept. Sci. 13, 855–865. https://doi.org/10.2174/138920312804871157 (2012).
doi: 10.2174/138920312804871157
pubmed: 23305370
pmcid: 3707005
Getzoff, E. D., Tainer, J. A., Lerner, R. A. & Geysen, H. M. The chemistry and mechanism of antibody binding to protein antigens. Adv. Immunol. 43, 1–98. https://doi.org/10.1016/s0065-2776(08)60363-6 (1988).
doi: 10.1016/s0065-2776(08)60363-6
pubmed: 3055852
Jakhar, R. & Gakhar, S. K. An immunoinformatics study to predict epitopes in the envelope protein of SARS-CoV-2. Can. J. Infect. Dis. Med. Microbiol. 2020, 7079356. https://doi.org/10.1155/2020/7079356 (2020).
doi: 10.1155/2020/7079356
pubmed: 33299503
pmcid: 7686850
Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153. https://doi.org/10.1038/317145a0 (1985).
doi: 10.1038/317145a0
pubmed: 2993920
Oberste, M. S., Maher, K., Kilpatrick, D. R. & Pallansch, M. A. Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 73, 1941–1948. https://doi.org/10.1128/JVI.73.3.1941-1948.1999 (1999).
doi: 10.1128/JVI.73.3.1941-1948.1999
pubmed: 9971773
pmcid: 104435
Pham, N. T. et al. Sequence analysis of the capsid gene of Aichi viruses detected from Japan, Bangladesh, Thailand, and Vietnam. J. Med. Virol. 80, 1222–1227. https://doi.org/10.1002/jmv.21193 (2008).
doi: 10.1002/jmv.21193
pubmed: 18461624
Bush, R. M. Predicting adaptive evolution. Nat. Rev. Genet. 2, 387–392. https://doi.org/10.1038/35072023 (2001).
doi: 10.1038/35072023
pubmed: 11331905
Yang, Z. & Nielsen, R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917. https://doi.org/10.1093/oxfordjournals.molbev.a004148 (2002).
doi: 10.1093/oxfordjournals.molbev.a004148
pubmed: 12032247
Kosiol, C., Bofkin, L. & Whelan, S. Phylogenetics by likelihood: Evolutionary modeling as a tool for understanding the genome. J. Biomed. Inform. 39, 51–61. https://doi.org/10.1016/j.jbi.2005.08.003 (2006).
doi: 10.1016/j.jbi.2005.08.003
pubmed: 16226061
Sangula, A. K. et al. Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east Africa suggests two independent introductions from southern Africa. BMC Evol. Biol. 10, 371. https://doi.org/10.1186/1471-2148-10-371 (2010).
doi: 10.1186/1471-2148-10-371
pubmed: 21118525
pmcid: 3004922
Zang, Y. et al. Epidemiologic and genomic characterizations of porcine kobuviruses in diarrheic and healthy pigs. Anim. Basel 13, 3129. https://doi.org/10.3390/ani13193129 (2023).
doi: 10.3390/ani13193129
Harvey, N. D. How old is my dog? Identification of rational age groupings in pet dogs based upon normative age-linked processes. Front. Vet. Sci. 8, 643085. https://doi.org/10.3389/fvets.2021.643085 (2021).
doi: 10.3389/fvets.2021.643085
pubmed: 33987218
pmcid: 8110720
Piewbang, C. & Techangamsuwan, S. Phylogenetic evidence of a novel lineage of canine pneumovirus and a naturally recombinant strain isolated from dogs with respiratory illness in Thailand. BMC Vet. Res. 15, 300. https://doi.org/10.1186/s12917-019-2035-1 (2019).
doi: 10.1186/s12917-019-2035-1
pubmed: 31426794
pmcid: 6700830
Nguyen-Manh, T., Piewbang, C., Rungsipipat, A. & Techangamsuwan, S. Molecular and phylogenetic analysis of Vietnamese canine parvovirus 2C originated from dogs reveals a new Asia-IV clade. Transbound. Emerg. Dis. 68, 1445–1453. https://doi.org/10.1111/tbed.13811 (2021).
doi: 10.1111/tbed.13811
pubmed: 32854156
Piewbang, C., Rungsipipat, A., Poovorawan, Y. & Techangamsuwan, S. Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs. J. Vet. Med. Sci. 78, 1847–1854. https://doi.org/10.1292/jvms.16-0342 (2017).
doi: 10.1292/jvms.16-0342
pubmed: 27628592
Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966. https://doi.org/10.1056/NEJMoa030781 (2003).
doi: 10.1056/NEJMoa030781
pubmed: 12690092
Van Nguyen, T., Piewbang, C. & Techangamsuwan, S. Genetic characterization of canine astrovirus in non-diarrhea dogs and diarrhea dogs in Vietnam and Thailand reveals the presence of a unique lineage. Front. Vet. Sci. 10, 145. https://doi.org/10.3389/fvets.2023.1278417 (2023).
doi: 10.3389/fvets.2023.1278417
Chen, C. et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 13, 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009 (2020).
doi: 10.1016/j.molp.2020.06.009
pubmed: 32585190
Piewbang, C., Radtanakatikanon, A., Puenpa, J., Poovorawan, Y. & Techangamsuwan, S. Genetic and evolutionary analysis of a new Asia-4 lineage and naturally recombinant canine distemper virus strains from Thailand. Sci. Rep. 9, 3198. https://doi.org/10.1038/s41598-019-39413-w (2019).
doi: 10.1038/s41598-019-39413-w
pubmed: 30824716
pmcid: 6397162
Dankaona, W., Mongkholdej, E., Satthathum, C., Piewbang, C. & Techangamsuwan, S. Epidemiology, genetic diversity, and association of canine circovirus infection in dogs with respiratory disease. Sci. Rep. 12, 15445. https://doi.org/10.1038/s41598-022-19815-z (2022).
doi: 10.1038/s41598-022-19815-z
pubmed: 36104425
pmcid: 9472715
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343. https://doi.org/10.1093/nar/gky1006 (2019).
doi: 10.1093/nar/gky1006
pubmed: 30357391
Kolaskar, A. S. & Tongaonkar, P. C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 276, 172–174. https://doi.org/10.1016/0014-5793(90)80535-q (1990).
doi: 10.1016/0014-5793(90)80535-q
pubmed: 1702393
Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45, W24–W29. https://doi.org/10.1093/nar/gkx346 (2017).
doi: 10.1093/nar/gkx346
pubmed: 28472356
pmcid: 5570230
Parker, J. M., Guo, D. & Hodges, R. S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochem. 25, 5425–5432. https://doi.org/10.1021/bi00367a013 (1986).
doi: 10.1021/bi00367a013
Emini, E. A., Hughes, J. V., Perlow, D. S. & Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55, 836–839. https://doi.org/10.1128/JVI.55.3.836-839.1985 (1985).
doi: 10.1128/JVI.55.3.836-839.1985
pubmed: 2991600
pmcid: 255070
Chou, P. & Fasman, G. D. Amino acid sequence. Adv. Enzymol. Relat. Areas. Mol. Biol. 47, 45. https://doi.org/10.1002/9780470122921.ch2 (2009).
doi: 10.1002/9780470122921.ch2
Karplus, P. & Schulz, G. Prediction of chain flexibility in proteins: A tool for the selection of peptide antigens. Sci. Nat. 72, 212–213. https://doi.org/10.1007/BF01195768 (1985).
doi: 10.1007/BF01195768
Ponomarenko, J. et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 9, 514. https://doi.org/10.1186/1471-2105-9-514 (2008).
doi: 10.1186/1471-2105-9-514