Stabilization and correction of aberrated laser beams via plasma channelling.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 May 2024
Historique:
received: 08 03 2024
accepted: 23 05 2024
medline: 28 5 2024
pubmed: 28 5 2024
entrez: 27 5 2024
Statut: epublish

Résumé

High-power laser applications, and especially laser wakefield acceleration, continue to draw attention through various research topics, and may bring many industrial applications based on compact accelerators, from ultrafast imaging to cancer therapy. However, one main step towards this is the arch issue of stability. Indeed, the interaction of a complex, aberrated laser beam with plasma involves a lot of physical phenomena and non-linear effects, such as self-focusing and filamentation. Different outcomes can be induced by small laser instabilities (i.e. laser wavefront), therefore harming any practical solution. One promising path to be explored is the use of a plasma channel to possibly guide and correct aberrated beams. Complex and costly experimental facilities are required to investigate such topics. However, one way to quickly and efficiently explore new solutions is numerical simulations, especially Particle-In-Cell (PIC) simulations if, and only if, one is confidently implementing such aberrated beams which, contrary to a Gaussian beam, do not have analytical solutions. In this research, we propose two new advancements: the correct implementation of aberrated laser beams inside a 3D PIC code, showing a great consistency, under vacuum, compared to the calculations with Fresnel theory); and the correction of their quality via the propagation inside a plasma channel. We demonstrate improvements in the beam pattern, becoming closer to a single plasma mode with less distortions, and thus suggesting a better stability for the targeted application. Through this confident calculation technique for distorted laser beams, we are now expecting to proceed with more accurate PIC simulations, closer to experimental conditions, and obtained results with plasma channels indicate promising future research.

Identifiants

pubmed: 38802481
doi: 10.1038/s41598-024-62997-x
pii: 10.1038/s41598-024-62997-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12078

Subventions

Organisme : JST-Mirai Program
ID : jP-MjMI17A1
Organisme : Council for Science, Technology and Innovation
ID : ImPACT R&D Program

Informations de copyright

© 2024. The Author(s).

Références

Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).
doi: 10.1103/PhysRevLett.43.267
Madey, J. M. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).
doi: 10.1063/1.1660466
Labat, M. et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Nat. Photonics 17, 150–156 (2023).
doi: 10.1038/s41566-022-01104-w
Oz, E. et al. Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 98, 084801 (2007).
doi: 10.1103/PhysRevLett.98.084801 pubmed: 17359103
Suk, H., Barov, N., Rosenzweig, J. B. & Esarey, E. Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 1011 (2001).
doi: 10.1103/PhysRevLett.86.1011 pubmed: 11177997
Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).
doi: 10.1038/nature05393 pubmed: 17151663
Gopal, K. & Gupta, D. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses. Phys. Plasmas 24 (2017).
Oumbarek Espinos, D. et al. Notable improvements on lwfa through precise laser wavefront tuning. Sci. Rep. 13, 18466 (2023).
doi: 10.1038/s41598-023-45737-5 pubmed: 37891421 pmcid: 10611724
Seemann, O., Wan, Y., Tata, S., Kroupp, E. & Malka, V. Refractive plasma optics for relativistic laser beams. Nat. Commun. 14, 3296 (2023).
doi: 10.1038/s41467-023-38937-0 pubmed: 37280229 pmcid: 10244328
Rondepierre, A., Espinos, D. O., Zhidkov, A. & Hosokai, T. Propagation and focusing dependency of a laser beam with its aberration distribution: understanding of the halo induced disturbance. Opt. Contin. 2, 1351–1367 (2023).
doi: 10.1364/OPTCON.484249
Beaurepaire, B. et al. Effect of the laser wave front in a laser-plasma accelerator. Phys. Rev. X 5, 031012 (2015).
Ferri, J. et al. Effect of experimental laser imperfections on laser wakefield acceleration and betatron source. Sci. Rep. 6, 27846 (2016).
doi: 10.1038/srep27846 pubmed: 27324915 pmcid: 4914997
Lin, J. et al. Adaptive control of laser-wakefield accelerators driven by mid-ir laser pulses. Opt. Express 27, 10912–10923 (2019).
doi: 10.1364/OE.27.010912 pubmed: 31052944
Arber, T. et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion 57, 113001 (2015).
doi: 10.1088/0741-3335/57/11/113001
Bergé, L. et al. Multiple filamentation of terawatt laser pulses in air. Phys. Rev. Lett. 92, 225002 (2004).
doi: 10.1103/PhysRevLett.92.225002 pubmed: 15245231
Apeksimov, D. et al. Controlling tw-laser pulse long-range filamentation in air by a deformable mirror. Appl. Opt. 57, 9760–9769 (2018).
doi: 10.1364/AO.57.009760 pubmed: 30462007
Moulanier, I. et al. Modeling of the driver transverse profile for laser wakefield electron acceleration at apollon research facility. Phys. Plasmas 30 (2023).
Pathak, N., Zhidkov, A., Masuda, S., Hosokai, T. & Kodama, R. Effect of halo on high power laser pulse wake in underdense plasma. Phys. Plasma 23. https://doi.org/10.1063/1.4968240 (2016).
Shin, J., Zhidkov, A., Jin, Z., Hosokai, T. & Kodama, R. Mode-selective terahertz emission from rippled air irradiated by femtosecond laser pulses. Appl. Phys. Express 7, 046202 (2014).
doi: 10.7567/APEX.7.046202
Morozov, A., Goltsov, A., Chen, Q., Scully, M. & Suckewer, S. Ionization assisted self-guiding of femtosecond laser pulses. Phys. Plasmas 25 (2018).
Sun, Q. et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica. J. Opt. A: Pure Appl. Opt. 7, 655 (2005).
doi: 10.1088/1464-4258/7/11/006
Kaur, M., Gupta, D. & Suk, H. Evolution of laser pulse shape in a parabolic plasma channel. Laser Phys. 27, 015401 (2016).
doi: 10.1088/1054-660X/27/1/015401
Xueren, H. et al. The propagation dynamics and stability of an intense laser beam in a radial power-law plasma channel. Plasma Sci. Technol 23, 125002 (2021).
doi: 10.1088/2058-6272/ac2ecf
Zernike, F. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1. https://doi.org/10.1016/S0031-8914(34)80259-5 (1934).
Wyant, J. & Creath, K. Basic wavefront aberration theory for optical metrology (Academic Press Inc, USA, 1992).
Born, M. & Wolf, E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge, 2005).
Cheng, X., Bradley, A., Ravikumar, S. & Thibos, L. N. The visual impact of zernike and seidel forms of monochromatic aberrations. Optometry and vision science: official publication of the American Academy of Optometry 87, 300 (2010).
doi: 10.1097/OPX.0b013e3181d95217 pubmed: 20351600
Shakir, S. A., Fried, D. L., Pease, E. A., Brennan, T. J. & Dolash, T. M. Efficient matrix approach to optical wave propagation and linear canonical transforms. Opt. Express 23, 26853–26862 (2015).
doi: 10.1364/OE.23.026853 pubmed: 26480196
Zhidkov, A., Koga, J., Hosokai, T., Kinoshita, K. & Uesaka, M. Effects of plasma density on relativistic self-injection for electron laser wake-field acceleration. Phys. Plasmas 11, 5379–5386 (2004).
doi: 10.1063/1.1807849
Pathak, N., Zhidkov, A., Sakai, Y., Jin, Z. & Hosokai, T. Charge coupling in multi-stage laser wakefield acceleration. Phys. Plasmas 27 (2020).
Pathak, N., Zhidkov, A. & Hosokai, T. Effect of pulse group velocity on charge loading in laser wakefield acceleration. Phys. Lett. A 425, 127873 (2022).
doi: 10.1016/j.physleta.2021.127873
Fock, V. A. Electromagnetic diffraction and propagation problems (Pergamon press, USA, 1965).
Davis, L. Theory of electromagnetic beams. Phys. Rev. A 19, 1177 (1979).
doi: 10.1103/PhysRevA.19.1177
Moulanier, I., Dickson, L. T., Massimo, F., Maynard, G. & Cros, B. Fast laser field reconstruction method based on a gerchberg-saxton algorithm with mode decomposition. JOSA B 40, 2450–2461 (2023).
doi: 10.1364/JOSAB.489884
Sun, G.-Z., Ott, E., Lee, Y. & Guzdar, P. Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526–532 (1987).
doi: 10.1063/1.866349
Brandi, H., Manus, C., Mainfray, G., Lehner, T. & Bonnaud, G. Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. i. paraxial approximation. Phys. Fluids B 5, 3539–3550 (1993).
doi: 10.1063/1.860828
Oguchi, A. et al. Multiple self-injection in the acceleration of monoenergetic electrons by a laser wake field. Phys. Plasmas 15 (2008).
Zhu, C.-Q. et al. Optical steering of electron beam in laser plasma accelerators. Opt. Express 28, 11609–11617 (2020).
doi: 10.1364/OE.380842 pubmed: 32403668
Permogorov, A., Cantono, G., Guenot, D., Persson, A. & Wahlström, C.-G. Effects of pulse chirp on laser-driven proton acceleration. Sci. Rep. 12, 3031 (2022).
doi: 10.1038/s41598-022-07019-4 pubmed: 35194105 pmcid: 8863795

Auteurs

Alexandre Rondepierre (A)

Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 565-0871, Japan. alexandre.rondepierre@sanken.osaka-u.ac.jp.
Laser Accelerator R&D Team, Innovative Light Sources Division, RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, Osaka, 679-5148, Japan. alexandre.rondepierre@sanken.osaka-u.ac.jp.
Mitsubishi Electric Corporation, Advanced Technology R&D Center, Industrial Automation Systems Department, Laser Systems Section, Amagasaki, Japan. alexandre.rondepierre@sanken.osaka-u.ac.jp.

Alexei Zhidkov (A)

Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 565-0871, Japan.

Driss Oumbarek Espinos (D)

Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 565-0871, Japan.

Tomonao Hosokai (T)

Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 565-0871, Japan.
Laser Accelerator R&D Team, Innovative Light Sources Division, RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, Osaka, 679-5148, Japan.

Classifications MeSH