Clinical coding of long COVID in primary care 2020-2023 in a cohort of 19 million adults: an OpenSAFELY analysis.
Descriptive cohort
Long COVID
Vaccination
Journal
EClinicalMedicine
ISSN: 2589-5370
Titre abrégé: EClinicalMedicine
Pays: England
ID NLM: 101733727
Informations de publication
Date de publication:
Jun 2024
Jun 2024
Historique:
received:
20
11
2023
revised:
10
04
2024
accepted:
29
04
2024
medline:
27
5
2024
pubmed:
27
5
2024
entrez:
27
5
2024
Statut:
epublish
Résumé
Long COVID is the patient-coined term for the persistent symptoms of COVID-19 illness for weeks, months or years following the acute infection. There is a large burden of long COVID globally from self-reported data, but the epidemiology, causes and treatments remain poorly understood. Primary care is used to help identify and treat patients with long COVID and therefore Electronic Health Records (EHRs) of past COVID-19 patients could be used to help fill these knowledge gaps. We aimed to describe the incidence and differences in demographic and clinical characteristics in recorded long COVID in primary care records in England. With the approval of NHS England we used routine clinical data from over 19 million adults in England linked to SARS-COV-2 test result, hospitalisation and vaccination data to describe trends in the recording of 16 clinical codes related to long COVID between November 2020 and January 2023. Using OpenSAFELY, we calculated rates per 100,000 person-years and plotted how these changed over time. We compared crude and adjusted (for age, sex, 9 NHS regions of England, and the dominant variant circulating) rates of recorded long COVID in patient records between different key demographic and vaccination characteristics using negative binomial models. We identified a total of 55,465 people recorded to have long COVID over the study period, which included 20,025 diagnoses codes and 35,440 codes for further assessment. The incidence of new long COVID records increased steadily over 2021, and declined over 2022. The overall rate per 100,000 person-years was 177.5 cases in women (95% CI: 175.5-179) and 100.5 in men (99.5-102). The majority of those with a long COVID record did not have a recorded positive SARS-COV-2 test 12 or more weeks before the long COVID record. In this descriptive study, EHR recorded long COVID was very low between 2020 and 2023, and incident records of long COVID declined over 2022. Using EHR diagnostic or referral codes unfortunately has major limitations in identifying and ascertaining true cases and timing of long COVID. This research was supported by the National Institute for Health and Care Research (NIHR) (OpenPROMPT: COV-LT2-0073).
Sections du résumé
Background
UNASSIGNED
Long COVID is the patient-coined term for the persistent symptoms of COVID-19 illness for weeks, months or years following the acute infection. There is a large burden of long COVID globally from self-reported data, but the epidemiology, causes and treatments remain poorly understood. Primary care is used to help identify and treat patients with long COVID and therefore Electronic Health Records (EHRs) of past COVID-19 patients could be used to help fill these knowledge gaps. We aimed to describe the incidence and differences in demographic and clinical characteristics in recorded long COVID in primary care records in England.
Methods
UNASSIGNED
With the approval of NHS England we used routine clinical data from over 19 million adults in England linked to SARS-COV-2 test result, hospitalisation and vaccination data to describe trends in the recording of 16 clinical codes related to long COVID between November 2020 and January 2023. Using OpenSAFELY, we calculated rates per 100,000 person-years and plotted how these changed over time. We compared crude and adjusted (for age, sex, 9 NHS regions of England, and the dominant variant circulating) rates of recorded long COVID in patient records between different key demographic and vaccination characteristics using negative binomial models.
Findings
UNASSIGNED
We identified a total of 55,465 people recorded to have long COVID over the study period, which included 20,025 diagnoses codes and 35,440 codes for further assessment. The incidence of new long COVID records increased steadily over 2021, and declined over 2022. The overall rate per 100,000 person-years was 177.5 cases in women (95% CI: 175.5-179) and 100.5 in men (99.5-102). The majority of those with a long COVID record did not have a recorded positive SARS-COV-2 test 12 or more weeks before the long COVID record.
Interpretation
UNASSIGNED
In this descriptive study, EHR recorded long COVID was very low between 2020 and 2023, and incident records of long COVID declined over 2022. Using EHR diagnostic or referral codes unfortunately has major limitations in identifying and ascertaining true cases and timing of long COVID.
Funding
UNASSIGNED
This research was supported by the National Institute for Health and Care Research (NIHR) (OpenPROMPT: COV-LT2-0073).
Identifiants
pubmed: 38800803
doi: 10.1016/j.eclinm.2024.102638
pii: S2589-5370(24)00217-7
pmc: PMC11127160
doi:
Types de publication
Journal Article
Langues
eng
Pagination
102638Investigateurs
Alex Walker
(A)
Amelia Green
(A)
Amir Mehrkar
(A)
Andrea Schaffer
(A)
Andrew Brown
(A)
Ben Goldacre
(B)
Ben Butler-Cole
(B)
Brian MacKenna
(B)
Caroline Morton
(C)
Caroline Walters
(C)
Catherine Stables
(C)
Christine Cunningham
(C)
Christopher Wood
(C)
Colm Andrews
(C)
David Evans
(D)
George Hickman
(G)
Helen Curtis
(H)
Henry Drysdale
(H)
Iain Dillingham
(I)
Jessica Morley
(J)
Jon Massey
(J)
Linda Nab
(L)
Lisa Hopcroft
(L)
Louis Fisher
(L)
Lucy Bridges
(L)
Milan Wiedemann
(M)
Nicholas DeVito
(N)
Orla Macdonald
(O)
Peter Inglesby
(P)
Rebecca Smith
(R)
Richard Croker
(R)
Robin Park
(R)
Rose Higgins
(R)
Sebastian Bacon
(S)
Simon Davy
(S)
Steven Maude
(S)
Thomas O'Dwyer
(T)
Tom Ward
(T)
Victoria Speed
(V)
William Hulme
(W)
Liam Hart
(L)
Pete Stokes
(P)
Krishnan Bhaskaran
(K)
Ruth Costello
(R)
Thomas Cowling
(T)
Ian Douglas
(I)
Rosalind Eggo
(R)
Stephen Evans
(S)
Harriet Forbes
(H)
Richard Grieve
(R)
Daniel Grint
(D)
Emily Herrett
(E)
Sinead Langan
(S)
Viyaasan Mahalingasivam
(V)
Kathryn Mansfield
(K)
Rohini Mathur
(R)
Helen McDonald
(H)
Edward Parker
(E)
Christopher Rentsch
(C)
Anna Schultze
(A)
Liam Smeeth
(L)
John Tazare
(J)
Laurie Tomlinson
(L)
Jemma Walker
(J)
Elizabeth Williamson
(E)
Kevin Wing
(K)
Angel Wong
(A)
Bang Zheng
(B)
Christopher Bates
(C)
Jonathan Cockburn
(J)
John Parry
(J)
Frank Hester
(F)
Sam Harper
(S)
Shaun O'Hanlon
(S)
Alex Eavis
(A)
Richard Jarvis
(R)
Dima Avramov
(D)
Paul Griffiths
(P)
Aaron Fowles
(A)
Nasreen Parkes
(N)
Rafael Perera
(R)
David Harrison
(D)
Kamlesh Khunti
(K)
Jonathan Sterne
(J)
Jennifer Quint
(J)
Informations de copyright
© 2024 The Authors.
Déclaration de conflit d'intérêts
All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare the following: LAT reports grants from MRC, Wellcome, NIHR in the past 3 years. MJ reports funding from BMGF, Gavi, RCUK, BMGF, WHO, Gavi, Wellcome Trust, European Commission, InnoHK, TFGH, CDC to their institution over the past 3 years. AB has received consultancy fees within the past 3 years from AstraZeneca, Takeda, Daiichi-Sankyo, Eisai, Roche, Novartis, Idorsia & Rythmn. CB & JP are employees of TPP (Leeds) Ltd who provide SystmOne and process data for OpenSafely under the instruction of NHS England. REC holds personal shares in AstraZeneca unrelated to this work. BG has received research funding from the Bennett Foundation, the Laura and John Arnold Foundation, the NHS National Institute for Health Research (NIHR), the NIHR School of Primary Care Research, NHS England, the NIHR Oxford Biomedical Research Centre, the Mohn-Westlake Foundation, NIHR Applied Research Collaboration Oxford and Thames Valley, the Wellcome Trust, the Good Thinking Foundation, Health Data Research UK, the Health Foundation, the World Health Organisation, UKRI MRC, Asthma UK, the British Lung Foundation, and the Longitudinal Health and Wellbeing strand of the National Core Studies programme; he has previously been a Non-Executive Director at NHS Digital; he also receives personal income from speaking and writing for lay audiences on the misuse of science. AM has represented the RCGP in the health informatics group and the Profession Advisory Group that advises on access to GP Data for Pandemic Planning and Research (GDPPR); the latter was a paid role. AM is a former employee and interim Chief Medical Officer of NHS Digital. AM has consulted for health care vendors, the last time in 2022; the companies consulted in the last 3 years have no relationship to OpenSAFELY. BMK is also employed by NHS England working on medicines policy and clinical lead for primary care medicines data. All other authors declare no competing interests.