Tunnel junctions based on interfacial two dimensional ferroelectrics.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 May 2024
24 May 2024
Historique:
received:
26
09
2023
accepted:
09
05
2024
medline:
25
5
2024
pubmed:
25
5
2024
entrez:
24
5
2024
Statut:
epublish
Résumé
Van der Waals heterostructures have opened new opportunities to develop atomically thin (opto)electronic devices with a wide range of functionalities. The recent focus on manipulating the interlayer twist angle has led to the observation of out-of-plane room temperature ferroelectricity in twisted rhombohedral bilayers of transition metal dichalcogenides. Here we explore the switching behaviour of sliding ferroelectricity using scanning probe microscopy domain mapping and tunnelling transport measurements. We observe well-pronounced ambipolar switching behaviour in ferroelectric tunnelling junctions with composite ferroelectric/non-polar insulator barriers and support our experimental results with complementary theoretical modelling. Furthermore, we show that the switching behaviour is strongly influenced by the underlying domain structure, allowing the fabrication of diverse ferroelectric tunnelling junction devices with various functionalities. We show that to observe the polarisation reversal, at least one partial dislocation must be present in the device area. This behaviour is drastically different from that of conventional ferroelectric materials, and its understanding is an important milestone for the future development of optoelectronic devices based on sliding ferroelectricity.
Identifiants
pubmed: 38789446
doi: 10.1038/s41467-024-48634-1
pii: 10.1038/s41467-024-48634-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4449Informations de copyright
© 2024. The Author(s).
Références
Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 1–14 (2016).
doi: 10.1038/natrevmats.2016.87
Kim, Y. S. et al. Critical thickness of ultrathin ferroelectric BaTi O3 films. Appl. Phys. Lett. 86, 1–3 (2005).
Soni, R. et al. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat. Commun. 5, 1–10 (2014).
doi: 10.1038/ncomms6414
Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).
pubmed: 23685861
doi: 10.1038/nmat3649
Yin, Y. W. et al. Multiferroic tunnel junctions. Front. Phys. 7, 380–385 (2012).
doi: 10.1007/s11467-012-0266-8
Qiao, H., Wang, C., Choi, W. S., Park, M. H. & Kim, Y. Ultra-thin ferroelectrics. Mater. Sci. Eng. R: Rep. 145, 100622 (2021).
doi: 10.1016/j.mser.2021.100622
Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023).
doi: 10.1038/s41578-022-00484-3
Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science (80-) 353, 274–278 (2016).
doi: 10.1126/science.aad8609
Yuan, S. et al. Room-temperature ferroelectricity in MoTe 2 down to the atomic monolayer limit. Nat. Commun. 10, 1–6 (2019).
doi: 10.1038/s41467-019-09669-x
Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).
pubmed: 30038286
doi: 10.1038/s41586-018-0336-3
de la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 1–9 (2021).
Liu, F. et al. Room-temperature ferroelectricity in CuInP 2 S 6 ultrathin flakes. Nat. Commun. 7, 1–6 (2016).
Zhang, X. et al. Origin of versatile polarization state in CuInP2 S6. Phys. Rev. B 108, L161406 (2023).
doi: 10.1103/PhysRevB.108.L161406
Zhou, Y. et al. Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes. Nano Lett. 17, 5508–5513 (2017).
pubmed: 28841328
doi: 10.1021/acs.nanolett.7b02198
Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).
Tao, S. et al. Designing ultra-flat bands in twisted bilayer materials at large twist angles: theory and application to two-dimensional indium selenide. J. Am. Chem. Soc. 144, 3949–3956 (2022).
pubmed: 35200018
doi: 10.1021/jacs.1c11953
Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 142–1466 (2021).
doi: 10.1126/science.abe8177
Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science (80-) 372, eabd3230 (2021).
doi: 10.1126/science.abd3230
Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 1–7 (2021).
doi: 10.1038/s41467-020-20667-2
Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).
pubmed: 35210566
pmcid: 9018412
doi: 10.1038/s41565-022-01072-w
Liang, J. et al. Shear strain-induced two-dimensional slip avalanches in Rhombohedral MoS2. Nano Lett. 23, 7228–7235 (2023).
pubmed: 37358360
doi: 10.1021/acs.nanolett.3c01487
Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 2022 174 17, 367–371 (2022).
Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).
pubmed: 36352233
doi: 10.1038/s41586-022-05341-5
Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).
pubmed: 25915194
doi: 10.1038/nnano.2015.70
Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science (80-) 340, 1311–1314 (2013).
doi: 10.1126/science.1235547
Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).
pubmed: 26859527
doi: 10.1021/acs.nanolett.5b05263
Uri, A. et al. Mapping the twist angle and unconventional Landau levels in magic angle graphene. Nature 581, 47–52 (2019).
Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal Dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).
pubmed: 32501062
doi: 10.1103/PhysRevLett.124.206101
Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).
pubmed: 32451502
doi: 10.1038/s41565-020-0682-9
Zhuravlev, M. Y., Wang, Y., Maekawa, S. & Tsymbal, E. Y. Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier. Appl. Phys. Lett. 95, 1–4 (2009).
doi: 10.1063/1.3195075
Trainer, D. J. et al. Inter-layer coupling induced valence band edge shift in mono- to few-layer MoS 2. Sci. Rep. 7, 1–11 (2017).
Castanon, E. G. et al. Calibrated kelvin-probe force microscopy of 2d materials using pt-coated probes. J. Phys. Commun. 4, 1–13 (2020).
doi: 10.1088/2399-6528/abb984
Ferreira, F. et al. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 1–10 (2021).
doi: 10.1038/s41598-021-92710-1
Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable network model for electrically tunable ferroelectric domain structure in twistronic bilayers of two-dimensional semiconductors. Nano Lett. 22, 1534–1540 (2022).
pubmed: 35129361
pmcid: 9171827
doi: 10.1021/acs.nanolett.1c04210
Tybell, T., Paruch, P., Giamarchi, T. & Triscone, J. M. Domain wall creep in epitaxial Ferroelectric [Formula presented] thin films. Phys. Rev. Lett. 89, 097601 (2002).
pubmed: 12190438
doi: 10.1103/PhysRevLett.89.097601
Tunneling Phenomena in Solids. Tunneling Phenomena in Solids (Springer US, 1969). https://doi.org/10.1007/978-1-4684-1752-4
Koo, J., Gao, S., Lee, H. & Yang, L. Vertical dielectric screening of few-layer van der Waals semiconductors. Nanoscale 9, 14540–14547 (2017).
pubmed: 28930350
doi: 10.1039/C7NR04134A
Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 1–7 (2018).
doi: 10.1038/s41699-018-0050-x
Ferreira, F., Enaldiev, V. V. & Fal’Ko, V. I. Scaleability of dielectric susceptibility ϵzz with the number of layers and additivity of ferroelectric polarization in van der Waals semiconductors. Phys. Rev. B 106, 125408 (2022).
doi: 10.1103/PhysRevB.106.125408
Molino, L. et al. Ferroelectric switching at symmetry‐broken interfaces by local control of dislocations networks. Adv. Mater. 2207816 https://doi.org/10.1002/adma.202207816 (2023).
Halbertal, D. et al. Moiré metrology of energy landscapes in van der Waals heterostructures. Nat. Commun. 12, 1–8 (2021).
doi: 10.1038/s41467-020-20428-1
Cai, X. et al. Bridging the gap between atomically thin semiconductors and metal leads. Nat. Commun. 13, 1–9 (2022).
doi: 10.1038/s41467-022-29449-4
Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).
pubmed: 37365226
doi: 10.1038/s41563-023-01595-0
Kim, D. J. et al. Observation of inhomogeneous domain nucleation in epitaxial Pb (Zr,Ti) O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).
doi: 10.1063/1.2790485
Jo, J. Y. et al. Polarization switching dynamics governed by the thermodynamic nucleation process in ultrathin ferroelectric films. Phys. Rev. Lett. 97, 247602 (2006).
pubmed: 17280324
doi: 10.1103/PhysRevLett.97.247602