EVIDENCE OF THE PROTECTIVE ROLE OF CARVACROL IN A RETINAL DEGENERATION ANIMAL MODEL.

Carvacrol Cell viability Neurodegenerative eye diseases Ocular neuroprotection Retinal cell functionality Retinal degeneration model Retinal ganglion cell

Journal

Experimental eye research
ISSN: 1096-0007
Titre abrégé: Exp Eye Res
Pays: England
ID NLM: 0370707

Informations de publication

Date de publication:
22 May 2024
Historique:
received: 03 05 2024
revised: 18 05 2024
accepted: 21 05 2024
medline: 25 5 2024
pubmed: 25 5 2024
entrez: 24 5 2024
Statut: aheadofprint

Résumé

Neurodegenerative pathologies affecting the posterior segment of the eye, are characterized by being devastating and responsible for the majority of visual dysfunctions worldwide. These diseases are primarily degenerative, progressing chronically, and can inflict gradual harm to the optic nerve, retinal ganglion cells (RGC), photoreceptors, and other retinal cells. This retinal damage leads to a progressive loss of vision, marking these conditions as a significant health concern worldwide. The intravitreal administration of the phytochemical Carvacrol (CAR) is expected to demonstrate a neuroprotective and antiapoptotic effect on retinal cells, with a specific focus on RGC. This effect will be observed in a retinal degeneration model (RDM) in rabbits induced by cytotoxic and oxidative agents, namely glutamate (GLUT) and L-buthionine-S, R-sulfoximine (BSO). An in vivo study was conducted using New Zealand rabbits in which retinal damage was created to evaluate the effectiveness of CAR. The effectiveness of CAR on the functionality of retinal neuronal cells in RDM was evaluated using pupillary light reflection (PLR). Furthermore, the phytotherapeutic's influence on cell viability was determined through flow cytometry analysis. Finally, the neuroprotective and antiapoptotic capabilities of CAR were specifically scrutinized in RGC through histological studies, quantifying cell survival, and employing immunohistochemical assays to detect the apoptotic index (%) using the TUNEL technique. Our results demonstrated that CAR promoted the recovery of the pupillary contraction profile over time, maintaining the functionality of retinal cells as healthy controls. Additionally, it showed increased cell viability under oxidative and cytotoxic conditions given by GLUT-BSO agents. Finally, we found that CAR protects the survival of RGC and decreases the percentage of apoptotic cells when compared to RDM. CAR demonstrated to have positive effects on the functionality of photoreceptive nerve cells by restoring pupillary contraction. Likewise, it was shown to have neuroprotective and antiapoptotic effects when evaluated in a general and specific way on retinal nerve cells.

Identifiants

pubmed: 38789020
pii: S0014-4835(24)00159-3
doi: 10.1016/j.exer.2024.109938
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

109938

Informations de copyright

Copyright © 2024. Published by Elsevier Ltd.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Ayelen Inda (A)

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina; Centro de investigación y transferencia (CIT VM), 5900 Villa María, Córdoba, Argentina.

Sofía Martinez (S)

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina.

Carolina Bessone (C)

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina; Departamento de Ciencias Básicas, Escuela Ciencias de la Salud, Universidad Nacional de Villa Mercedes (UNVIME), 5730 Villa Mercedes, San Luis, Argentina.

Maximiliano Rios (M)

Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina.

Mario Guido (M)

Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina.

Rocío Herrero-Vanrell (R)

Grupo de Investigación en Innovación, Terapia y Desarrollo Farmacéutico en Oftalmología (UCM 920415), Departamento de Farmacia y Tecnología de Alimentos, Facultad de Farmacia. Universidad Complutense, 28040 Madrid, España.

Jose Domingo Luna (JD)

Área de Cirugía Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. y Fundación VER. 5000 Córdoba, Argentina.

Daniel Allemandi (D)

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina.

Soledad Ravetti (S)

Centro de investigación y transferencia (CIT VM), 5900 Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, 5900 Villa María, Córdoba, Argentina.

Daniela Quinteros (D)

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina. Electronic address: danielaquinteros@unc.edu.ar.

Classifications MeSH