Assessment of gene-disease associations and recommendations for genetic testing for somatic variants in vascular anomalies by VASCERN-VASCA.

ERN Gene curation ISSVA Mosaic Postzygotic Precision medicine Somatic VASCERN-VASCA Vascular malformation

Journal

Orphanet journal of rare diseases
ISSN: 1750-1172
Titre abrégé: Orphanet J Rare Dis
Pays: England
ID NLM: 101266602

Informations de publication

Date de publication:
22 May 2024
Historique:
received: 12 12 2023
accepted: 19 04 2024
medline: 23 5 2024
pubmed: 23 5 2024
entrez: 22 5 2024
Statut: epublish

Résumé

Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).

Sections du résumé

BACKGROUND BACKGROUND
Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations.
RESULTS RESULTS
Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence.
CONCLUSIONS CONCLUSIONS
This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).

Identifiants

pubmed: 38778413
doi: 10.1186/s13023-024-03196-9
pii: 10.1186/s13023-024-03196-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

213

Subventions

Organisme : Bundesministerium für Bildung und Forschung
ID : FKZ 01GM1902A
Organisme : Bundesministerium für Bildung und Forschung
ID : FKZ 01GM1921A
Organisme : Fonds De La Recherche Scientifique - FNRS
ID : T.0240.23
Organisme : Fonds De La Recherche Scientifique - FNRS
ID : P.C005.22
Organisme : Koning Boudewijnstichting
ID : 2018-J1810250-211305
Organisme : Gouvernement Wallon
ID : WELBIO-CR-2019C-06

Informations de copyright

© 2024. The Author(s).

Références

Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg. 1982;69(3):412–22.
pubmed: 7063565 doi: 10.1097/00006534-198203000-00002
International Society for the Study of Vascular Anomalies. ISSVA classification for vascular anomalies. Revised 2018. Available from: https://www.issva.org/UserFiles/file/ISSVA-Classification-2018.pdf .
Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41(1):118–24.
pubmed: 19079259 doi: 10.1038/ng.272
Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet. 2009;18(R1):R65–74.
pubmed: 19297403 pmcid: 2657941 doi: 10.1093/hmg/ddp002
Queisser A, Seront E, Boon LM, Vikkula M. Genetic Basis and Therapies for Vascular Anomalies. Circ Res. 2021;129(1):155–73.
pubmed: 34166070 doi: 10.1161/CIRCRESAHA.121.318145
Limaye N, Kangas J, Mendola A, Godfraind C, Schlogel MJ, Helaers R, et al. Somatic Activating PIK3CA Mutations Cause Venous Malformation. Am J Hum Genet. 2015;97(6):914–21.
pubmed: 26637981 pmcid: 4678782 doi: 10.1016/j.ajhg.2015.11.011
Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med. 2016;8(332):332ra42.
pubmed: 27030594 pmcid: 4962922 doi: 10.1126/scitranslmed.aaf1164
Canaud G, Hammill AM, Adams D, Vikkula M, Keppler-Noreuil KM. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306.
pubmed: 34238334 pmcid: 8268514 doi: 10.1186/s13023-021-01929-8
Nguyen HL, Boon LM, Vikkula M. Vascular Anomalies Caused by Abnormal Signaling within Endothelial Cells: Targets for Novel Therapies. Semin Interv Radiol. 2017;34(3):233–8.
doi: 10.1055/s-0037-1604296
Van Damme A, Seront E, Dekeuleneer V, Boon LM, Vikkula M. New and Emerging Targeted Therapies for Vascular Malformations. Am J Clin Dermatol. 2020.
FDA accelerated approval for Alpelisib. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-alpelisib-pik3ca-related-overgrowth-spectrum .
Nguyen HL, Boon LM, Vikkula M. Genetics of vascular malformations. Semin Pediatr Surg. 2014;23(4):221–6.
pubmed: 25241102 doi: 10.1053/j.sempedsurg.2014.06.014
VASCERN-VASCA. Available from: https://vascern.eu/groupe/vascular-anomalies/ .
Gene Clinical Validity Curation Process Standard Operating Procedure version 8. Available from: https://clinicalgenome.org/docs/summary-of-updates-to-the-clingen-gene-clinical-validity-curation-sop-version-8/ .
LOVD: Leiden Open Variation Database. Available from: https://www.lovd.nl/ .
ClinVar Miner database. Available from: https://clinvarminer.genetics.utah.edu/ .
COSMIC: Catalogue Of Somatic Mutation In Cancer. Available from: https://cancer.sanger.ac.uk/cosmic .
CancerHotspots database. Available from: https://www.cancerhotspots.org/#/home .
Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P, et al. Accelerating Discovery of Functional Mutant Alleles in Cancer. Cancer Discov. 2018;8(2):174–83.
pubmed: 29247016 doi: 10.1158/2159-8290.CD-17-0321
Walsh MF, Ritter DI, Kesserwan C, Sonkin D, Chakravarty D, Chao E, et al. Integrating somatic variant data and biomarkers for germline variant classification in cancer predisposition genes. Hum Mutat. 2018;39(11):1542–52.
pubmed: 30311369 pmcid: 6310222 doi: 10.1002/humu.23640
Cottrell CE, Bender NR, Zimmermann MT, Heusel JW, Corliss M, Evenson MJ, et al. Somatic PIK3R1 variation as a cause of vascular malformations and overgrowth. Genet Med. 2021;23(10):1882–8.
pubmed: 34040190 pmcid: 8486672 doi: 10.1038/s41436-021-01211-z
Gelb BD, Cave H, Dillon MW, Gripp KW, Lee JA, Mason-Suares H, et al. ClinGen’s RASopathy Expert Panel consensus methods for variant interpretation. Genet Med. 2018;20(11):1334–45.
pubmed: 29493581 pmcid: 6119537 doi: 10.1038/gim.2018.3
Eijkelenboom A, Kamping EJ, Kastner-van Raaij AW, Hendriks-Cornelissen SJ, Neveling K, Kuiper RP, et al. Reliable Next-Generation Sequencing of Formalin-Fixed, Paraffin-Embedded Tissue Using Single Molecule Tags. J Mol Diagn. 2016;18(6):851–63.
pubmed: 27637301 doi: 10.1016/j.jmoldx.2016.06.010
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.
pubmed: 25741868 pmcid: 4544753 doi: 10.1038/gim.2015.30
Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23.
pubmed: 27993330 pmcid: 5707196 doi: 10.1016/j.jmoldx.2016.10.002
HGVS standard nomenclature. Available from: http://www.hgvs.org .
Li D, March ME, Gutierrez-Uzquiza A, Kao C, Seiler C, Pinto E, et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat Med. 2019;25(7):1116–22.
pubmed: 31263281 doi: 10.1038/s41591-019-0479-2
Fjaer R, Marciniak K, Sundnes O, Hjorthaug H, Sheng Y, Hammarstrom C, et al. A novel somatic mutation in GNB2 provides new insights to the pathogenesis of Sturge-Weber syndrome. Hum Mol Genet. 2021;30(21):1919–31.
pubmed: 34124757 pmcid: 8522634 doi: 10.1093/hmg/ddab144
Foster JB, Li D, March ME, Sheppard SE, Adams DM, Hakonarson H, et al. Kaposiform lymphangiomatosis effectively treated with MEK inhibition. EMBO Mol Med. 2020;12(10): e12324.
pubmed: 32894644 pmcid: 7539180 doi: 10.15252/emmm.202012324
Wang S, Wang W, Zhang X, Gui J, Zhang J, Guo Y, et al. A somatic mutation in PIK3CD unravels a novel candidate gene for lymphatic malformation. Orphanet J Rare Dis. 2021;16(1):208.
pubmed: 33964933 pmcid: 8106842 doi: 10.1186/s13023-021-01782-9
Akiyama M, Yamaoka M, Mikami-Terao Y, Ohyama W, Yokoi K, Arakawa Y, et al. Somatic mosaic mutations of IDH1 and NPM1 associated with cup-like acute myeloid leukemia in a patient with Maffucci syndrome. Int J Hematol. 2015;102(6):723–8.
pubmed: 26508204 doi: 10.1007/s12185-015-1892-z
Huang L, Couto JA, Pinto A, Alexandrescu S, Madsen JR, Greene AK, et al. Somatic GNAQ Mutation is Enriched in Brain Endothelial Cells in Sturge-Weber Syndrome. Pediatr Neurol. 2017;67:59–63.
pubmed: 27919468 doi: 10.1016/j.pediatrneurol.2016.10.010
Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Rezai Jahromi B, et al. Somatic Activating KRAS Mutations in Arteriovenous Malformations of the Brain. N Engl J Med. 2018;378(3):250–61.
pubmed: 29298116 pmcid: 8161530 doi: 10.1056/NEJMoa1709449
Lalonde E, Ebrahimzadeh J, Rafferty K, Richards-Yutz J, Grant R, Toorens E, et al. Molecular diagnosis of somatic overgrowth conditions: A single-center experience. Mol Genet Genomic Med. 2019;7(3): e536.
pubmed: 30761771 pmcid: 6418364 doi: 10.1002/mgg3.536
Mirzaa G, Timms AE, Conti V, Boyle EA, Girisha KM, Martin B, et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9).
Soblet J, Kangas J, Natynki M, Mendola A, Helaers R, Uebelhoer M, et al. Blue Rubber Bleb Nevus (BRBN) Syndrome Is Caused by Somatic TEK (TIE2) Mutations. J Invest Dermatol. 2017;137(1):207–16.
pubmed: 27519652 doi: 10.1016/j.jid.2016.07.034
Michel ME, Konczyk DJ, Yeung KS, Murillo R, Vivero MP, Hall AM, et al. Causal somatic mutations in urine DNA from persons with the CLOVES subgroup of the PIK3CA-related overgrowth spectrum. Clin Genet. 2018;93(5):1075–80.
pubmed: 29231959 pmcid: 5899663 doi: 10.1111/cge.13195
Riviere JB, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934–40.
pubmed: 22729224 pmcid: 3408813 doi: 10.1038/ng.2331
Biderman Waberski M, Lindhurst M, Keppler-Noreuil KM, Sapp JC, Baker L, Gripp KW, et al. Urine cell-free DNA is a biomarker for nephroblastomatosis or Wilms tumor in PIK3CA-related overgrowth spectrum (PROS). Genet Med. 2018;20(9):1077–81.
pubmed: 29300373 doi: 10.1038/gim.2017.228
Zenner K, Jensen DM, Cook TT, Dmyterko V, Bly RA, Ganti S, et al. Cell-free DNA as a diagnostic analyte for molecular diagnosis of vascular malformations. Genet Med. 2021;23(1):123–30.
pubmed: 32884133 doi: 10.1038/s41436-020-00943-8
Palmieri M, Pinto AM, di Blasio L, Curro A, Monica V, Sarno LD, et al. A pilot study of next generation sequencing-liquid biopsy on cell-free DNA as a novel non-invasive diagnostic tool for Klippel-Trenaunay syndrome. Vascular. 2021;29(1):85–91.
pubmed: 32588787 doi: 10.1177/1708538120936421
Ten Broek RW, Eijkelenboom A, van der Vleuten CJM, Kamping EJ, Kets M, Verhoeven BH, et al. Comprehensive molecular and clinicopathological analysis of vascular malformations: A study of 319 cases. Genes Chromosomes Cancer. 2019;58(8):541–50.
pubmed: 30677207 pmcid: 6594036 doi: 10.1002/gcc.22739
Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, Darling T, et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A. 2014;164(7):1713–33.
pmcid: 4320693 doi: 10.1002/ajmg.a.36552
Brouillard P, Schlögel MJ, Homayun Sepehr N, Helaers R, Queisser A, Fastré E, et al. Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations. Orphanet J Rare Dis. 2021;16(1):267.
pubmed: 34112235 pmcid: 8194016 doi: 10.1186/s13023-021-01898-y
Blesinger H, Kaulfuß S, Aung T, Schwoch S, Prantl L, Rößler J, et al. PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations. PLoS ONE. 2018;13(7): e0200343.
pubmed: 29985963 pmcid: 6037383 doi: 10.1371/journal.pone.0200343
Li D, Sheppard SE, March ME, Battig MR, Surrey LF, Srinivasan AS, et al. Genomic profiling informs diagnoses and treatment in vascular anomalies. Nat Med. 2023;29(6):1530–9.
pubmed: 37264205 doi: 10.1038/s41591-023-02364-x
Balan J, Koganti T, Basu S, Dina MA, Artymiuk CJ, Barr Fritcher EG, et al. MICon Contamination Detection Workflow for Next-Generation Sequencing Laboratories Using Microhaplotype Loci and Supervised Learning. J Mol Diagn. 2023;25(8):602–10.
pubmed: 37236547 doi: 10.1016/j.jmoldx.2023.05.001
Fiévet A, Bernard V, Tenreiro H, Dehainault C, Girard E, Deshaies V, et al. ART-DeCo: easy tool for detection and characterization of cross-contamination of DNA samples in diagnostic next-generation sequencing analysis. Eur J Hum Genet. 2019;27(5):792–800.
pubmed: 30683922 pmcid: 6461872 doi: 10.1038/s41431-018-0317-x
Singh RR. Next-Generation Sequencing in High-Sensitive Detection of Mutations in Tumors: Challenges, Advances, and Applications. J Mol Diagn. 2020;22(8):994–1007.
pubmed: 32480002 doi: 10.1016/j.jmoldx.2020.04.213
Steiert TA, Parra G, Gut M, Arnold N, Trotta JR, Tonda R, et al. A critical spotlight on the paradigms of FFPE-DNA sequencing. Nucleic Acids Res. 2023;51(14):7143–62.
pubmed: 37351572 pmcid: 10415133 doi: 10.1093/nar/gkad519
Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat Protoc. 2014;9(11):2586–606.
pubmed: 25299156 pmcid: 4271547 doi: 10.1038/nprot.2014.170
Douzgou S, Rawson M, Baselga E, Danielpour M, Faivre L, Kashanian A, et al. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet. 2022;101(1):32–47.
pubmed: 34240408 doi: 10.1111/cge.14027
Integrative genomics viewer (IGV). Available from: https://igv.org/ .
Schönewolf-Greulich B, Karstensen HG, Hjortshøj TD, Jørgensen FS, Harder KM, Frevert S, et al. Early diagnosis enabling precision medicine treatment in a young boy with PIK3R1-related overgrowth. Eur J Med Genet. 2022;65(10): 104590.
pubmed: 35964931 doi: 10.1016/j.ejmg.2022.104590
Eijkelenboom A, van Schaik FMA, van Es RM, Ten Broek RW, Rinne T, van der Vleuten C, et al. Functional characterisation of a novel class of in-frame insertion variants of KRAS and HRAS. Sci Rep. 2019;9(1):8239.
pubmed: 31160609 pmcid: 6547725 doi: 10.1038/s41598-019-44584-7
Leichsenring J, Horak P, Kreutzfeldt S, Heining C, Christopoulos P, Volckmar AL, et al. Variant classification in precision oncology. Int J Cancer. 2019;145(11):2996–3010.
pubmed: 31008532 doi: 10.1002/ijc.32358
Mateo J, Chakravarty D, Dienstmann R, Jezdic S, Gonzalez-Perez A, Lopez-Bigas N, et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol. 2018;29(9):1895–902.
pubmed: 30137196 pmcid: 6158764 doi: 10.1093/annonc/mdy263
Froyen G, Le Mercier M, Lierman E, Vandepoele K, Nollet F, Boone E, et al. Standardization of Somatic Variant Classifications in Solid and Haematological Tumours by a Two-Level Approach of Biological and Clinical Classes: An Initiative of the Belgian ComPerMed Expert Panel. Cancers (Basel). 2019;11(12).
Lai A, Soucy A, El Achkar CM, Barkovich AJ, Cao Y, DiStefano M, et al. The ClinGen Brain Malformation Variant Curation Expert Panel: Rules for somatic variants in AKT3, MTOR, PIK3CA, and PIK3R2. Genet Med. 2022;24(11):2240–8.
pubmed: 35997716 pmcid: 9883838 doi: 10.1016/j.gim.2022.07.020

Auteurs

Nicole Revencu (N)

Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium.

Astrid Eijkelenboom (A)

Department of Pathology, Radboud University Medical Center, VASCERN VASCA European Reference Centre, PO Box 9101, 6500, HB, Nijmegen, the Netherlands.

Claire Bracquemart (C)

Normandie Univ, UNICAEN, Service de Génétique, CHU Caen Normandie, BIOTARGEN EA 7450, VASCERN VASCA European Reference Centre, Caen, 14000, France.

Pia Alhopuro (P)

HUS Diagnostic Center, Laboratory of Genetics, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland.

Judith Armstrong (J)

Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III (ISCIII), Madrid, and Genomic Unit, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain.

Eulalia Baselga (E)

Department of Dermatology, Hospital Sant Joan de Deu, VASCERN VASCA European Reference Centre, Barcelona, Spain.

Claudia Cesario (C)

Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy.

Maria Lisa Dentici (ML)

Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, VASCERN VASCA European Reference Centre, 00165, Rome, Italy.

Melanie Eyries (M)

Sorbonne Université, Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, VASCERN VASCA European Reference Centre, Paris, France.

Sofia Frisk (S)

Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, VASCERN VASCA European Reference Centre, Stockholm, Sweden.

Helena Gásdal Karstensen (HG)

Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark.

Nagore Gene-Olaciregui (N)

Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain.

Sirpa Kivirikko (S)

Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland.

Cinzia Lavarino (C)

Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain.

Inger-Lise Mero (IL)

Department of Medical Genetics, Oslo University Hospital, VASCERN VASCA European Reference Centre, Oslo, Norway.

Rodolphe Michiels (R)

Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium.

Elisa Pisaneschi (E)

Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy.

Bitten Schönewolf-Greulich (B)

Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark.

Ilse Wieland (I)

Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany.

Martin Zenker (M)

Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany.

Miikka Vikkula (M)

Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, Brussels, Belgium. miikka.vikkula@uclouvain.be.
Human Molecular Genetics , de Duve Institute, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium. miikka.vikkula@uclouvain.be.
WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium. miikka.vikkula@uclouvain.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH