In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification.

AD ALS Gene therapy HD Neurodegenerative diseases PD

Journal

Naunyn-Schmiedeberg's archives of pharmacology
ISSN: 1432-1912
Titre abrégé: Naunyn Schmiedebergs Arch Pharmacol
Pays: Germany
ID NLM: 0326264

Informations de publication

Date de publication:
22 May 2024
Historique:
received: 17 01 2024
accepted: 01 05 2024
medline: 22 5 2024
pubmed: 22 5 2024
entrez: 22 5 2024
Statut: aheadofprint

Résumé

Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.

Identifiants

pubmed: 38775852
doi: 10.1007/s00210-024-03141-4
pii: 10.1007/s00210-024-03141-4
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Shiraz University of Medical Sciences
ID : 29849

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ababneh NA et al (2020) Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair. Hum Mol Genet 29(13):2200–2217
pubmed: 32504093 pmcid: 7399532 doi: 10.1093/hmg/ddaa106
Abdelnour SA et al (2021) The potential of CRISPR/Cas9 gene editing as a treatment strategy for inherited diseases. Front Cell Dev Biol 9:699597
pubmed: 34977000 pmcid: 8715006 doi: 10.3389/fcell.2021.699597
Acsadi G et al (2002) Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. Hum Gene Ther 13(9):1047–1059
pubmed: 12067438 doi: 10.1089/104303402753812458
Alarcón-Arís D et al (2018) Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for Parkinson’s disease. Mol Ther 26(2):550–567
pubmed: 29273501 doi: 10.1016/j.ymthe.2017.11.015
Alarcón-Arís D et al (2020) Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson’s disease-like mouse model and in monkeys. EBioMedicine 59:102944
Almohaimeed HM et al (2023) Non-coding RNAs as key players in the neurodegenerative diseases: multi-platform strategies and approaches for exploring the Genome’s dark matter. J Chem Neuroanat 129:102236
Angeloni C et al (2022) Mechanisms underlying neurodegenerative disorders and potential neuroprotective activity of agrifood by-products. Antioxidants 12(1):94
pubmed: 36670956 pmcid: 9854890 doi: 10.3390/antiox12010094
Anguela XM, High KA (2019) Entering the modern era of gene therapy. Annu Rev Med 70:273–288
pubmed: 30477394 doi: 10.1146/annurev-med-012017-043332
Arias-Fuenzalida J et al (2017) FACS-assisted CRISPR-Cas9 genome editing facilitates Parkinson’s disease modeling. Stem Cell Reports 9(5):1423–1431
pubmed: 28988985 pmcid: 5830965 doi: 10.1016/j.stemcr.2017.08.026
Bäck S et al (2013) Gene therapy with AAV 2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain and Behavior 3(2):75–88
pubmed: 23532969 pmcid: 3607149 doi: 10.1002/brb3.117
Bahmad H et al (2017) Modeling human neurological and neurodegenerative diseases: from induced pluripotent stem cells to neuronal differentiation and its applications in neurotrauma. Front Mol Neurosci 10:50
pubmed: 28293168 pmcid: 5329035 doi: 10.3389/fnmol.2017.00050
Bankiewicz KS et al (2000) Convection-enhanced delivery of AAV vector in Parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164(1):2–14
pubmed: 10877910 doi: 10.1006/exnr.2000.7408
Bankiewicz KS et al (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14(4):564–570
pubmed: 16829205 doi: 10.1016/j.ymthe.2006.05.005
Barker RA et al (2020) Huntingtin-lowering strategies for Huntington’s disease. Expert Opin Investig Drugs 29(10):1125–1132
pubmed: 32745442 doi: 10.1080/13543784.2020.1804552
Barros-Viegas AT et al (2020) miRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease. Molecular Therapy-Nucleic Acids 19:1219–1236
pubmed: 32069773 pmcid: 7031139 doi: 10.1016/j.omtn.2020.01.010
Bayarsaikhan E et al (2016) Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: a possible implication for theranostics. Int J Nanomed 10(sup1):281–292
Behrstock S et al (2006) Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13(5):379–388
pubmed: 16355116 doi: 10.1038/sj.gt.3302679
Bemelmans A-P et al (1999) Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 10(18):2987–2997
pubmed: 10609659 doi: 10.1089/10430349950016393
Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Investig 115(6):1449–1457
pubmed: 15931380 pmcid: 1137006 doi: 10.1172/JCI24761
Biju K et al (2013) Bone marrow-derived microglia-based neurturin delivery protects against dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. Neurosci Lett 535:24–29
pubmed: 23295906 pmcid: 3645298 doi: 10.1016/j.neulet.2012.12.034
Blurton-Jones M et al (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 5(2):1–14
doi: 10.1186/scrt440
Borel F et al (2016) Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1 G93A mice and nonhuman primates. Hum Gene Ther 27(1):19–31
pubmed: 26710998 doi: 10.1089/hum.2015.122
Bortolozzi A et al (2021) Oligonucleotides as therapeutic tools for brain disorders: focus on major depressive disorder and Parkinson’s disease. Pharmacol Ther 227:107873
pubmed: 33915178 doi: 10.1016/j.pharmthera.2021.107873
Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749
pubmed: 15217349 doi: 10.1146/annurev.neuro.27.070203.144244
Bu L-L et al (2020) LncRNA-T199678 mitigates α-synuclein-induced dopaminergic neuron injury via miR-101-3p. Frontiers in Aging Neuroscience 12:599246
pubmed: 33328976 pmcid: 7732511 doi: 10.3389/fnagi.2020.599246
Cai L et al (2019) Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int Immunopharmacol 75:105734
pubmed: 31301558 doi: 10.1016/j.intimp.2019.105734
Carroll JB et al (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther 19(12):2178–2185
pubmed: 21971427 pmcid: 3242664 doi: 10.1038/mt.2011.201
Cederfjäll E et al (2012) Design of a single AAV vector for coexpression of TH and GCH1 to establish continuous DOPA synthesis in a rat model of Parkinson’s disease. Mol Ther 20(7):1315–1326
pubmed: 22294150 pmcid: 3392974 doi: 10.1038/mt.2012.1
Chen W, Hu Y, Ju D (2020) Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharmaceutica Sinica B 10(8):1347–1359
pubmed: 32963936 pmcid: 7488363 doi: 10.1016/j.apsb.2020.01.015
Chen F et al (2021) CRISPR/Cas9-mediated CysLT1R deletion reverses synaptic failure, amyloidosis and cognitive impairment in APP/PS1 mice. Aging (albany NY) 13(5):6634
pubmed: 33591941 doi: 10.18632/aging.202501
Chen CX-Q et al (2022) Generation of homozygous PRKN, PINK1 and double PINK1/PRKN knockout cell lines from healthy induced pluripotent stem cells using CRISPR/Cas9 editing. Stem Cell Research 62:102806
pubmed: 35561458 doi: 10.1016/j.scr.2022.102806
Chi X, Gatti P, Papoian T (2017) Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discovery Today 22(5):823–833
pubmed: 28159625 doi: 10.1016/j.drudis.2017.01.013
Cho IK et al (2019) Combination of stem cell and gene therapy ameliorates symptoms in Huntington’s disease mice. NPJ Regen Med 4(1):7
pubmed: 30937182 pmcid: 6435637 doi: 10.1038/s41536-019-0066-7
Chopade P et al (2023) Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med 8(1):e10367
pubmed: 36684083 doi: 10.1002/btm2.10367
Clark DP, Pazdernik NJ, McGehee M.R (2019) Chapter 23 - Plasmids. In Molecular Biology (3rd edn) Clark DP, Pazdernik NJ, McGehee MR, Editors. Academic Cell. pp 712–748
Cole T et al (2016) Snca targeted antisense oligonucleotides mediate progression of pathological deposition in alpha synuclein rodent transmission models of Parkinson’s disease (P6. 239). AAN Enterprises
Cole TA et al (2021) α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease. JCI insight 6(5):135633
Dabrowska M et al (2020) Generation of new isogenic models of Huntington’s disease using CRISPR-Cas9 technology. Int J Mol Sci 21(5):1854
pubmed: 32182692 pmcid: 7084361 doi: 10.3390/ijms21051854
Damien P, Allan DS (2015) Regenerative therapy and immune modulation using umbilical cord blood–derived cells. Biol Blood Marrow Transplant 21(9):1545–1554
pubmed: 26079441 doi: 10.1016/j.bbmt.2015.05.022
de Almeida LP et al (2001) Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington’s disease. Neurobiol Dis 8(3):433–446
pubmed: 11442352 doi: 10.1006/nbdi.2001.0388
de Fougerolles A et al (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6(6):443–453
pubmed: 17541417 pmcid: 7098199 doi: 10.1038/nrd2310
DeVos SL et al (2017) Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Science translational medicine 9(374) eaag0481
Dey ND et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214(2):193–200
pubmed: 20493905 doi: 10.1016/j.bbr.2010.05.023
Ding X-M et al (2019) Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem Biol Interact 307:73–81
pubmed: 31004593 doi: 10.1016/j.cbi.2019.04.017
Dirren E et al (2015) SOD1 silencing in motoneurons or glia rescues neuromuscular function in ALS mice. Ann Clin Transl Neurol 2(2):167–184
pubmed: 25750921 pmcid: 4338957 doi: 10.1002/acn3.162
Dodart J-C et al (2005) Gene delivery of human apolipoprotein E alters brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 102(4):1211–1216
pubmed: 15657137 pmcid: 544620 doi: 10.1073/pnas.0409072102
Dodge JC et al (2010) AAV4-mediated expression of IGF-1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice. Mol Ther 18(12):2075–2084
pubmed: 20859261 pmcid: 2997594 doi: 10.1038/mt.2010.206
Doxakis E (2021) Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 41(5):2656–2688
pubmed: 32656818 doi: 10.1002/med.21706
Drouet V et al (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 65(3):276–285
pubmed: 19334076 doi: 10.1002/ana.21569
Duan W et al (2020) The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther 27(3–4):157–169
pubmed: 31819203 doi: 10.1038/s41434-019-0116-1
Eberling J et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983
pubmed: 18401019 doi: 10.1212/01.wnl.0000312381.29287.ff
Ebert AD et al (2008) Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol 209(1):213–223
pubmed: 18061591 doi: 10.1016/j.expneurol.2007.09.022
Ebert AD et al (2010) Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington’s disease. Exp Neurol 224(1):155–162
pubmed: 20227407 doi: 10.1016/j.expneurol.2010.03.005
Emborg ME et al (2008) GDNF-secreting human neural progenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys. Cell Transplant 17(4):383–395
pubmed: 18522241 doi: 10.3727/096368908784423300
Evers MM et al (2018) AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington’s disease minipig model. Mol Ther 26(9):2163–2177
pubmed: 30007561 pmcid: 6127509 doi: 10.1016/j.ymthe.2018.06.021
Fouad GI (2019) Stem cells as a promising therapeutic approach for Alzheimer’s disease: a review. Bull Natl Res Cent 43(1):1–20
doi: 10.1186/s42269-019-0078-x
Friedrich M, Aigner A (2022) Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs 36(5):549–571
pubmed: 35997897 pmcid: 9396607 doi: 10.1007/s40259-022-00549-3
Fu A-L, Zhang X-M, Sun M-J (2005) Antisense inhibition of acetylcholinesterase gene expression for treating cognition deficit in Alzheimer’s disease model mice. Brain Res 1066(1–2):10–15
pubmed: 16337925 doi: 10.1016/j.brainres.2005.09.063
Fu X et al (2012) Construction of an oncolytic herpes simplex virus that precisely targets hepatocellular carcinoma cells. Mol Ther 20(2):339–346
pubmed: 22146341 doi: 10.1038/mt.2011.265
Gaj T et al (2017) In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Science advances 3(12):eaar3952
pubmed: 29279867 pmcid: 5738228 doi: 10.1126/sciadv.aar3952
Garwood C et al (2017) astrocytes in Alzheimer’s disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 43(4):281–298
pubmed: 27442752 doi: 10.1111/nan.12338
Gasmi M et al (2007) AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 27(1):67–76
pubmed: 17532642 doi: 10.1016/j.nbd.2007.04.003
Gentile G et al (2022) Dysregulated miRNAs as biomarkers and therapeutical targets in neurodegenerative diseases. J Pers Med 12(5):770
pubmed: 35629192 pmcid: 9143965 doi: 10.3390/jpm12050770
Gessler DJ et al (2019) Intravenous infusion of AAV for widespread gene delivery to the nervous system. Adeno-Associated Virus Vectors: Design and Delivery, pp 143–163
Glavaski-Joksimovic A et al (2010) Glial cell line-derived neurotrophic factor–secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. J Neurosci Res 88(12):2669–2681
pubmed: 20544825 doi: 10.1002/jnr.22435
Gorbatyuk OS et al (2010) In vivo RNAi-mediated α-synuclein silencing induces nigrostriatal degeneration. Mol Ther 18(8):1450–1457
pubmed: 20551914 pmcid: 2927065 doi: 10.1038/mt.2010.115
Grondin R et al (2012) Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain 135(4):1197–1209
pubmed: 22252996 pmcid: 3326247 doi: 10.1093/brain/awr333
Gross SK et al (2020) Focal and dose-dependent neuroprotection in ALS mice following AAV2-neurturin delivery. Exp Neurol 323:113091
pubmed: 31678350 doi: 10.1016/j.expneurol.2019.113091
Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979
pubmed: 21870813 doi: 10.1021/ar200151m
György B et al (2018) CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Molecular Therapy-Nucleic Acids 11:429–440
pubmed: 29858078 pmcid: 5992788 doi: 10.1016/j.omtn.2018.03.007
Han L et al (2018) MicroRNA Let-7f-5p promotes bone marrow mesenchymal stem cells survival by targeting caspase-3 in Alzheimer disease model. Front Neurosci 12:333
pubmed: 29872375 pmcid: 5972183 doi: 10.3389/fnins.2018.00333
Harper SQ et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci 102(16):5820–5825
pubmed: 15811941 pmcid: 556303 doi: 10.1073/pnas.0501507102
He W et al (2020) Progress in systemic co-delivery of microRNAs and chemotherapeutics for cancer treatment by using lipid-based nanoparticles. Ther Deliv 11(9):591–603
pubmed: 32933403 doi: 10.4155/tde-2020-0052
Healy DG et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590
pubmed: 18539534 pmcid: 2832754 doi: 10.1016/S1474-4422(08)70117-0
Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6(8):2155–2162
pubmed: 3746405 pmcid: 6568758 doi: 10.1523/JNEUROSCI.06-08-02155.1986
Helmschrodt C et al (2017) Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-Synuclein expression in a model of Parkinson’s disease. Molecular Therapy-Nucleic Acids 9:57–68
pubmed: 29246324 pmcid: 5602522 doi: 10.1016/j.omtn.2017.08.013
Heman-Ackah SM, Bassett AR, Wood MJA (2016) Precision modulation of neurodegenerative disease-related gene expression in human iPSC-derived neurons. Sci Rep 6(1):28420
pubmed: 27341390 pmcid: 4920027 doi: 10.1038/srep28420
Hemming ML et al (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Aβ-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 4(8):e262
pubmed: 17760499 pmcid: 1952204 doi: 10.1371/journal.pmed.0040262
Henriques A et al (2011) CNS-targeted viral delivery of G-CSF in an animal model for ALS: improved efficacy and preservation of the neuromuscular unit. Mol Ther 19(2):284–292
pubmed: 21139572 doi: 10.1038/mt.2010.271
Hoban D, Howard L, Dowd E (2015) GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s disease. Neuroscience 303:402–411
pubmed: 26166730 doi: 10.1016/j.neuroscience.2015.07.014
Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24(1):677–736
pubmed: 11520916 pmcid: 2758233 doi: 10.1146/annurev.neuro.24.1.677
Hudry E, Vandenberghe LH (2019) Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101(5):839–862
pubmed: 30844402 doi: 10.1016/j.neuron.2019.02.017
Hudry E et al (2013) Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci Transl Med 5(212):212ra161–212ra161
Hulshof S et al (2002) Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesions. Glia 38(1):24–35
pubmed: 11921201 doi: 10.1002/glia.10050
Hussain R et al (2018) Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches. Brain Sci 8(9):177
pubmed: 30223579 pmcid: 6162719 doi: 10.3390/brainsci8090177
Huynh T-PV et al (2017) Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron 96(5):1013–1023. e4
Hwang D et al (2009) Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 16(10):1234–1244
pubmed: 19626053 doi: 10.1038/gt.2009.80
Inoue N et al (2018) Knockdown of the mitochondria-localized protein p13 protects against experimental parkinsonism. EMBO Rep 19(3):e44860
pubmed: 29371327 pmcid: 5836091 doi: 10.15252/embr.201744860
Iwata N et al (2004) Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-β peptide in mouse brain. J Neurosci 24(4):991–998
pubmed: 14749444 pmcid: 6729819 doi: 10.1523/JNEUROSCI.4792-03.2004
Jiang J et al (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90(3):535–550
pubmed: 27112497 pmcid: 4860075 doi: 10.1016/j.neuron.2016.04.006
Jiang J, Wang Y, Deng M (2022) New developments and opportunities in drugs being trialed for amyotrophic lateral sclerosis from 2020 to 2022. Front Pharmacol 13:1054006
pubmed: 36518658 pmcid: 9742490 doi: 10.3389/fphar.2022.1054006
Jiang H et al (2023) CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 11(2):675–686
Kanninen K et al (2009) Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 106(38):16505–16510
pubmed: 19805328 pmcid: 2752553 doi: 10.1073/pnas.0908397106
Kantor B et al (2018) Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD. Mol Ther 26(11):2638–2649
pubmed: 30266652 pmcid: 6224806 doi: 10.1016/j.ymthe.2018.08.019
Karimian A et al (2020) CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci 259:118165
pubmed: 32735884 doi: 10.1016/j.lfs.2020.118165
Kennea NL, Mehmet H (2002) Neural stem cells. J Pathol 197(4):536–550
pubmed: 12115869 doi: 10.1002/path.1189
Khalil IA, Harashima H (2018) An efficient PEGylated gene delivery system with improved targeting: synergism between octaarginine and a fusogenic peptide. Int J Pharm 538(1–2):179–187
pubmed: 29341911 doi: 10.1016/j.ijpharm.2018.01.007
Kim BW et al (2020) Human motor neurons with SOD1-G93A mutation generated from CRISPR/Cas9 gene-edited iPSCs develop pathological features of amyotrophic lateral sclerosis. Front Cell Neurosci 14:604171
pubmed: 33328898 pmcid: 7710664 doi: 10.3389/fncel.2020.604171
Kimura S, Harashima H (2020) Current status and challenges associated with CNS-targeted gene delivery across the BBB. Pharmaceutics 12(12):1216
pubmed: 33334049 pmcid: 7765480 doi: 10.3390/pharmaceutics12121216
Kiyota T et al (2010) CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+ PS1 bigenic mice. FASEB J 24(8):3093
pubmed: 20371618 pmcid: 2909296 doi: 10.1096/fj.10-155317
Klein RL et al (2000) NGF gene transfer to intrinsic basal forebrain neurons increases cholinergic cell size and protects from age-related, spatial memory deficits in middle-aged rats. Brain Res 875(1–2):144–151
pubmed: 10967308 doi: 10.1016/S0006-8993(00)02634-2
Kolli N et al (2017) CRISPR-Cas9 mediated gene-silencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci 18(4):754
pubmed: 28368337 pmcid: 5412339 doi: 10.3390/ijms18040754
Konstantinidis E et al (2022) CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation. Molecular Therapy-Nucleic Acids 28:450–461
pubmed: 35505961 pmcid: 9043867 doi: 10.1016/j.omtn.2022.03.022
Kordasiewicz HB et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74(6):1031–1044
pubmed: 22726834 pmcid: 3383626 doi: 10.1016/j.neuron.2012.05.009
Kordower JH et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492):767–773
pubmed: 11052933 doi: 10.1126/science.290.5492.767
Kordower JH et al (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60(6):706–715
pubmed: 17192932 doi: 10.1002/ana.21032
Koval ED et al (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22(20):4127–4135
pubmed: 23740943 pmcid: 3781640 doi: 10.1093/hmg/ddt261
Krakora D et al (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21(8):1602–1610
pubmed: 23712039 pmcid: 3734670 doi: 10.1038/mt.2013.108
Krishnan G et al (2020) CRISPR deletion of the C9ORF72 promoter in ALS/FTD patient motor neurons abolishes production of dipeptide repeat proteins and rescues neurodegeneration. Acta Neuropathol 140:81–84
pubmed: 32266467 pmcid: 7300081 doi: 10.1007/s00401-020-02154-6
Kumar D et al (2022) Emerging therapeutic developments in neurodegenerative diseases: a clinical investigation. Drug Discovery Today 27(10):103305
pubmed: 35728774 doi: 10.1016/j.drudis.2022.06.005
Kumar S et al (2019) Novel MicroRNA-455–3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1865(9):2428–2440
Lamptey RN et al (2022) A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci 23(3):1851
pubmed: 35163773 pmcid: 8837071 doi: 10.3390/ijms23031851
Laperle AH et al (2023) Human iPSC-derived neural progenitor cells secreting GDNF provide protection in rodent models of ALS and retinal degeneration. Stem Cell Reports 18(8):1629–1642
Lauzon M-A et al (2015) Growth factor treatment to overcome Alzheimer’s dysfunctional signaling. Cell Signal 27(6):1025–1038
pubmed: 25744541 doi: 10.1016/j.cellsig.2015.02.018
Lee HJ et al (2012) Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in the mouse with ibotenic acid-induced cognitive dysfunction. Cell Transplant 21(11):2487–2496
pubmed: 22526467 doi: 10.3727/096368912X638964
Lee J et al (2019) CRISPR/Cas9 edited sRAGE-MSCs protect neuronal death in Parkinson’s disease model. Int J Stem Cells 12(1):114–124
pubmed: 30836725 pmcid: 6457706 doi: 10.15283/ijsc18110
Levivier M et al (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15(12):7810–7820
pubmed: 8613721 pmcid: 6577965 doi: 10.1523/JNEUROSCI.15-12-07810.1995
LeWitt PA et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10(4):309–319
pubmed: 21419704 doi: 10.1016/S1474-4422(11)70039-4
Li X et al (2020a) Knockdown of long non-coding RNA TUG1 depresses apoptosis of hippocampal neurons in Alzheimer’s disease by elevating microRNA-15a and repressing ROCK1 expression. Inflamm Res 69:897–910
pubmed: 32577774 doi: 10.1007/s00011-020-01364-8
Li L et al (2020b) Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Exp Mol Pathol 117:104545
pubmed: 32976819 doi: 10.1016/j.yexmp.2020.104545
Li Y et al (2020c) Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 234:119711
pubmed: 31945616 pmcid: 7035593 doi: 10.1016/j.biomaterials.2019.119711
Li H et al (2021) Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical Parkinsonian phenotype. Neurosci Bull 37(9):1271–1288
pubmed: 34165772 pmcid: 8423927 doi: 10.1007/s12264-021-00732-6
Li K, Wang Z (2023) lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev 86:101878
Lim CK et al (2020) Treatment of a mouse model of ALS by in vivo base editing. Mol Ther 28(4):1177–1189
pubmed: 31991108 pmcid: 7132599 doi: 10.1016/j.ymthe.2020.01.005
Lin Y-T et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98(6):1141–1154. e7
Liu Y, Wang D-A (2015) Viral vector-mediated transgenic cell therapy in regenerative medicine: safety of the process. Expert Opin Biol Ther 15(4):559–567
pubmed: 25528865 doi: 10.1517/14712598.2015.995086
Liu Y et al (2013) Investigation of the performance of PEG–PEI/ROCK-II-siRNA complexes for Alzheimer’s disease in vitro. Brain Res 1490:43–51
pubmed: 23103413 doi: 10.1016/j.brainres.2012.10.039
Liu T et al (2014) Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1-AS expression. Mol Med Rep 10(3):1275–1281
pubmed: 24970022 pmcid: 4121421 doi: 10.3892/mmr.2014.2351
Liu Z et al (2015) Therapeutic effects of transplantation of as-mir-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease. Cell Physiol Biochem 37(1):321–330
pubmed: 26316079 doi: 10.1159/000430356
Liu W et al (2021) Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis Clin Med 4(3):179–191
pubmed: 34541453 pmcid: 8444435 doi: 10.1093/pcmedi/pbab014
Lowery RL, Majewska AK (2010) Intracranial injection of adeno-associated viral vectors. J Vis Exp 45:e2140
Lu L et al (2005) Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson’s disease. Brain Res Protoc 15(1):46–51
doi: 10.1016/j.brainresprot.2005.03.002
Manfredsson FP et al (2009) Tight long-term dynamic doxycycline responsive nigrostriatal GDNF using a single rAAV vector. Mol Ther 17(11):1857–1867
pubmed: 19707186 pmcid: 2835027 doi: 10.1038/mt.2009.196
Marks WJ et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2–neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. The Lancet Neurology 7(5):400–408
pubmed: 18387850 doi: 10.1016/S1474-4422(08)70065-6
Marr RA et al (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23(6):1992–1996
pubmed: 12657655 pmcid: 6742010 doi: 10.1523/JNEUROSCI.23-06-01992.2003
Martier R, Konstantinova P (2020) Gene therapy for neurodegenerative diseases: slowing down the ticking clock. Front Neurosci 14:580179
pubmed: 33071748 pmcid: 7530328 doi: 10.3389/fnins.2020.580179
Martier R et al (2019) Artificial microRNAs targeting C9orf72 can reduce accumulation of intra-nuclear transcripts in ALS and FTD patients. Mol Ther Nucleic Acids 14:593–608
pubmed: 30776581 pmcid: 6378669 doi: 10.1016/j.omtn.2019.01.010
Martínez-Morales P et al (2013) Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev Rep 9:685–699
pubmed: 23681704 doi: 10.1007/s12015-013-9443-6
McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34
pubmed: 28817209 doi: 10.1111/ene.13413
McGinley LM et al (2016) Human cortical neural stem cells expressing insulin-like growth factor-I: a novel cellular therapy for Alzheimer’s disease. Stem Cells Transl Med 5(3):379–391
pubmed: 26744412 pmcid: 4807660 doi: 10.5966/sctm.2015-0103
Mehta M et al (2019) Oligonucleotide therapy: an emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 308:206–215
pubmed: 31136735 pmcid: 7094617 doi: 10.1016/j.cbi.2019.05.028
Migliore L, Coppedè F (2022) Gene–environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 18(11):643–660
pubmed: 36180553 doi: 10.1038/s41582-022-00714-w
Miller TM et al (2005) Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 57(5):773–776
pubmed: 15852369 pmcid: 1351126 doi: 10.1002/ana.20453
Miller TM et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. The Lancet Neurology 12(5):435–442
pubmed: 23541756 pmcid: 3712285 doi: 10.1016/S1474-4422(13)70061-9
Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12(5):341–355
pubmed: 21499295 doi: 10.1038/nrg2988
Mitchell MJ et al (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20(2):101–124
pubmed: 33277608 doi: 10.1038/s41573-020-0090-8
Nagahara AH et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15(3):331–337
pubmed: 19198615 pmcid: 2838375 doi: 10.1038/nm.1912
Nakamori M et al (2019) Nucleic acid–based therapeutics for Parkinson’s disease. Neurotherapeutics 16:287–298
pubmed: 30756362 pmcid: 6554378 doi: 10.1007/s13311-019-00714-7
Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12(5):301–315
pubmed: 21445084 doi: 10.1038/nrg2985
Nichols NL et al (2013) Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis. Am J Respir Crit Care Med 187(5):535–542
pubmed: 23220913 pmcid: 3733409 doi: 10.1164/rccm.201206-1072OC
Nilsson P et al (2010) Gene therapy in Alzheimer’s disease–potential for disease modification. J Cell Mol Med 14(4):741–757
pubmed: 20158567 pmcid: 3823109 doi: 10.1111/j.1582-4934.2010.01038.x
Nirale P, Paul A, Yadav KS (2020) Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s. Life Sci 245:117394
pubmed: 32017870 doi: 10.1016/j.lfs.2020.117394
Noble W et al (2020) Considerations for future tau-targeted therapeutics: can they deliver? Expert Opin Drug Discov 15(3):265–267
pubmed: 31661994 doi: 10.1080/17460441.2020.1685977
Nuytemans K et al (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31(7):763–780
pubmed: 20506312 pmcid: 3056147 doi: 10.1002/humu.21277
O’Keeffe FE et al (2008) Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain 131(3):630–641
pubmed: 18202103 doi: 10.1093/brain/awm340
Oksanen M et al (2017) PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports 9(6):1885–1897
pubmed: 29153989 pmcid: 5785689 doi: 10.1016/j.stemcr.2017.10.016
Olanow CW et al (2015) Trophic factors for Parkinson’s disease: to live or let die. Mov Disord 30(13):1715–1724
pubmed: 26769457 doi: 10.1002/mds.26426
Ortiz-Virumbrales M et al (2017) CRISPR/Cas9-correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol Commun 5:1–20
doi: 10.1186/s40478-017-0475-z
Ozawa K et al (2008) Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 30(3):121–127
pubmed: 18249090 doi: 10.1016/j.jaut.2007.12.008
Paddison PJ et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958
pubmed: 11959843 pmcid: 152352 doi: 10.1101/gad.981002
Palanimuthu D et al (2017) A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur J Med Chem 139:612–632
pubmed: 28841514 doi: 10.1016/j.ejmech.2017.08.021
Palfi S et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383(9923):1138–1146
pubmed: 24412048 doi: 10.1016/S0140-6736(13)61939-X
Paolini Sguazzi G et al (2021) Induced pluripotent stem cells (iPSCs) and gene therapy: a new era for the treatment of neurological diseases. Int J Mol Sci 22(24):13674
pubmed: 34948465 pmcid: 8706293 doi: 10.3390/ijms222413674
Park H, Kim J (2022) Activation of melatonin receptor 1 by CRISPR-Cas9 activator ameliorates cognitive deficits in an Alzheimer’s disease mouse model. J Pineal Res 72(3):e12787
pubmed: 35133672 doi: 10.1111/jpi.12787
Park S et al (2009) Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp Mol Med 41(7):487–500
pubmed: 19322031 pmcid: 2721146 doi: 10.3858/emm.2009.41.7.054
Park D et al (2013) Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging 34(11):2639–2646
pubmed: 23731954 doi: 10.1016/j.neurobiolaging.2013.04.026
Park H et al (2019) In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci 22(4):524–528
pubmed: 30858603 doi: 10.1038/s41593-019-0352-0
Pascual-Lucas M et al (2014) Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol Med 6(10):1246–1262
pubmed: 25100745 pmcid: 4287930 doi: 10.15252/emmm.201404228
Patil S et al (2019) The development of functional non-viral vectors for gene delivery. Int J Mol Sci 20(21):5491
pubmed: 31690044 pmcid: 6862238 doi: 10.3390/ijms20215491
Pereira PA et al (2016) Recombinant pre-miR-29b for Alzheimer’s disease therapeutics. Sci Rep 6(1):19946
pubmed: 26818210 pmcid: 4730146 doi: 10.1038/srep19946
Pertusa M et al (2008) Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging 29(9):1366–1379
pubmed: 17399854 doi: 10.1016/j.neurobiolaging.2007.02.026
Petrus-Reurer S et al (2021) Immunological considerations and challenges for regenerative cellular therapies. Commun Biol 4(1):798
pubmed: 34172826 pmcid: 8233383 doi: 10.1038/s42003-021-02237-4
Piao X et al (2022) Dual-gRNA approach with limited off-target effect corrects C9ORF72 repeat expansion in vivo. Sci Rep 12(1):5672
pubmed: 35383205 pmcid: 8983752 doi: 10.1038/s41598-022-07746-8
Piguet F et al (2021) The challenge of gene therapy for neurological diseases: strategies and tools to achieve efficient delivery to the central nervous system. Hum Gene Ther 32(7–8):349–374
pubmed: 33167739 doi: 10.1089/hum.2020.105
Pineda J et al (2007) Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model: optical neuroimage tracking of brain-grafted cells. Gene Ther 14(2):118–128
pubmed: 16943855 doi: 10.1038/sj.gt.3302847
Poewe W et al (2020) New hopes for disease modification in Parkinson’s disease. Neuropharmacology 171:108085
pubmed: 32298705 doi: 10.1016/j.neuropharm.2020.108085
Pollock K et al (2016) Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther 24(5):965–977
pubmed: 26765769 pmcid: 4881765 doi: 10.1038/mt.2016.12
Prince M et al (2015) World Alzheimer report 2015. The global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer's disease international, London
Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344
pubmed: 20107219 doi: 10.1056/NEJMra0909142
Rahman S et al (2019) CRISPR/Cas: An intriguing genomic editing tool with prospects in treating neurodegenerative diseases. in Seminars in cell & developmental biology. Elsevier
Rajan S, Kaas B (2022) Parkinson’s disease: risk factor modification and prevention. in Seminars in neurology. Thieme Medical Publishers, Inc. 333 Seventh Avenue, 18th Floor, New York, NY
Ralph GS et al (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11(4):429–433
pubmed: 15768029 doi: 10.1038/nm1205
Raoul C et al (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11(4):423–428
pubmed: 15768028 doi: 10.1038/nm1207
Raza C, Anjum R (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90
pubmed: 30980848 doi: 10.1016/j.lfs.2019.03.057
Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30
pubmed: 24503004 pmcid: 3989046 doi: 10.1016/j.arr.2014.01.004
Ren X et al (2013) AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp Neurol 248:148–156
pubmed: 23764500 doi: 10.1016/j.expneurol.2013.06.002
Revilla S et al (2014) Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 20(11):961–972
pubmed: 25119316 pmcid: 6493188 doi: 10.1111/cns.12312
Rezaei S et al (2023) Current therapies for neurological disorders and their limitations. Phytonutrients and Neurological Disorders. Elsevier, pp 107–130
doi: 10.1016/B978-0-12-824467-8.00009-7
Rinaldi C, Wood MJ (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14(1):9–21
pubmed: 29192260 doi: 10.1038/nrneurol.2017.148
Roberts TC, Langer R, Wood MJ (2020) Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 19(10):673–694
pubmed: 32782413 pmcid: 7419031 doi: 10.1038/s41573-020-0075-7
Rook ME, Southwell AL (2022) Antisense oligonucleotide therapy: from design to the Huntington disease clinic. BioDrugs 36(2):105–119
pubmed: 35254632 pmcid: 8899000 doi: 10.1007/s40259-022-00519-9
Rosenberg MB et al (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242(4885):1575–1578
pubmed: 3201248 doi: 10.1126/science.3201248
Rosenberg JB et al (2018) AAVrh. 10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev 29(1):24–47
pubmed: 29409358 pmcid: 5870071 doi: 10.1089/humc.2017.231
Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98
pubmed: 21163446 doi: 10.1016/S1474-4422(10)70245-3
Sadeghian B et al (2020) Design, synthesis and biological activity evaluation of novel carbazole-benzylpiperidine hybrids as potential anti Alzheimer agents. J Mol Struct 1221:128793
doi: 10.1016/j.molstruc.2020.128793
Sadeghian I et al (2022a) Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 169:106094
pubmed: 34896590 doi: 10.1016/j.ejps.2021.106094
Sadeghian I et al (2022b) Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 74(8):1085–1116
pubmed: 35728949 doi: 10.1093/jpp/rgac038
Sadeghian I et al (2024) Potential of oligonucleotide-and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. Naunyn Schmiedebergs Arch Pharmacol 397:1275–1310
Sayed N et al (2022) Gene therapy: comprehensive overview and therapeutic applications. Life Sci 294:120375
pubmed: 35123997 doi: 10.1016/j.lfs.2022.120375
Schlich M et al (2017) Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: evaluation of alpha-synuclein knockdown efficacy. Nano Res 10:3496–3508
doi: 10.1007/s12274-017-1561-z
Sengupta U, Kayed R (2022) Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 214:102270
pubmed: 35447272 doi: 10.1016/j.pneurobio.2022.102270
Shea Y-F et al (2016) A systematic review of familial Alzheimer’s disease: differences in presentation of clinical features among three mutated genes and potential ethnic differences. J Formos Med Assoc 115(2):67–75
pubmed: 26337232 doi: 10.1016/j.jfma.2015.08.004
Sherman LS et al (2019) Mesenchymal stem cell therapies in brain disease. in Seminars in cell & developmental biology. Elsevier
Shin JW et al (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25(20):4566–4576
pubmed: 28172889 pmcid: 6078600
Singer O et al (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8(10):1343–1349
pubmed: 16136043 doi: 10.1038/nn1531
Skogen M et al (2006) Short G-rich oligonucleotides as a potential therapeutic for Huntington’s Disease. BMC Neurosci 7:1–16
doi: 10.1186/1471-2202-7-65
Smith D et al (1999) Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci 96(19):10893–10898
pubmed: 10485922 pmcid: 17979 doi: 10.1073/pnas.96.19.10893
Smith RA et al (2006) Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Investig 116(8):2290–2296
pubmed: 16878173 pmcid: 1518790 doi: 10.1172/JCI25424
Smith PY et al (2015) miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet 24(23):6721–6735
pubmed: 26362250 pmcid: 4634376 doi: 10.1093/hmg/ddv377
Spencer B et al (2008) Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci 9:1–12
doi: 10.1186/1471-2202-9-109
Statello L et al (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118
pubmed: 33353982 doi: 10.1038/s41580-020-00315-9
Suzuki M et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16(12):2002–2010
pubmed: 18797452 doi: 10.1038/mt.2008.197
Svendsen CN et al (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85(2):141–152
pubmed: 9874150 doi: 10.1016/S0165-0270(98)00126-5
Tabrizi SJ et al (2019) Targeting huntingtin expression in patients with Huntington’s disease. N Engl J Med 380(24):2307–2316
pubmed: 31059641 doi: 10.1056/NEJMoa1900907
Tan SH et al (2019) Emerging pathways to neurodegeneration: dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed Pharmacother 111:765–777
pubmed: 30612001 doi: 10.1016/j.biopha.2018.12.101
Taxman DJ et al (2010) Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. RNA Therapeutics: Function, Design, and Delivery 629:139–156
Temple S (2023) Advancing cell therapy for neurodegenerative diseases. Cell stem cell 30(5):512–529
Thomsen GM et al (2014) Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J Neurosci 34(47):15587–15600
pubmed: 25411487 pmcid: 4298650 doi: 10.1523/JNEUROSCI.2037-14.2014
Tu Z et al (2015) CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener 10:1–8
doi: 10.1186/s13024-015-0031-x
Tuszynski MH et al (1998) Targeted intraparenchymal delivery of human NGF by gene transfer to the primate basal forebrain for 3 months does not accelerate β-amyloid plaque deposition. Exp Neurol 154(2):573–582
pubmed: 9878192 doi: 10.1006/exnr.1998.6956
Tuszynski MH et al (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72(10):1139–1147
pubmed: 26302439 pmcid: 4944824 doi: 10.1001/jamaneurol.2015.1807
Uehara T et al (2019) Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease. Sci Rep 9(1):7567
pubmed: 31110191 pmcid: 6527855 doi: 10.1038/s41598-019-43772-9
Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccines 2(3):624–641
pubmed: 26344749 pmcid: 4494222 doi: 10.3390/vaccines2030624
Van Bulck M et al (2019) Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int J Mol Sci 20(3):719
pubmed: 30743990 pmcid: 6386829 doi: 10.3390/ijms20030719
van Zundert B, Brown RH Jr (2017) Silencing strategies for therapy of SOD1-mediated ALS. Neurosci Lett 636:32–39
pubmed: 27507699 doi: 10.1016/j.neulet.2016.07.059
van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507
pubmed: 22302756 doi: 10.1161/CIRCRESAHA.111.247916
Vermilyea SC et al (2020) In vitro CRISPR/Cas9-directed gene editing to model LRRK2 G2019S Parkinson’s disease in common marmosets. Sci Rep 10(1):3447
pubmed: 32103062 pmcid: 7044232 doi: 10.1038/s41598-020-60273-2
Verstraeten A, Theuns J, Van Broeckhoven C (2015) Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 31(3):140–149
pubmed: 25703649 doi: 10.1016/j.tig.2015.01.004
Videnovic A (2013) Treatment of Huntington disease. Curr Treat Options Neurol 15:424–438
pubmed: 23417276 pmcid: 3677041 doi: 10.1007/s11940-013-0219-8
Wang H et al (2014) Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet 23(3):668–681
pubmed: 24108104 doi: 10.1093/hmg/ddt454
Wang L et al (2017) CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 8(5):365–378
pubmed: 28401346 pmcid: 5413600 doi: 10.1007/s13238-017-0397-3
Wang P et al (2018) Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J Control Release 279:220–233
pubmed: 29679667 doi: 10.1016/j.jconrel.2018.04.034
Wang M et al (2019a) MicroRNA-217/138-5p downregulation inhibits inflammatory response, oxidative stress and the induction of neuronal apoptosis in MPP+-induced SH-SY5Y cells. Am J Transl Res 11(10):6619
pubmed: 31737212 pmcid: 6834497
Wang D, Tai PW, Gao G (2019b) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18(5):358–378
pubmed: 30710128 pmcid: 6927556 doi: 10.1038/s41573-019-0012-9
Warren Olanow C et al (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 78(2):248–257
pubmed: 26061140 doi: 10.1002/ana.24436
Williams PD, Kingston PA (2011) Plasmid-mediated gene therapy for cardiovascular disease. Cardiovasc Res 91(4):565–576
pubmed: 21742674 doi: 10.1093/cvr/cvr197
Wilson DM et al (2023) Hallmarks of neurodegenerative diseases. Cell 186(4):693–714
pubmed: 36803602 doi: 10.1016/j.cell.2022.12.032
Winkle M et al (2021) Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev Drug Discov 20(8):629–651
pubmed: 34145432 pmcid: 8212082 doi: 10.1038/s41573-021-00219-z
Wong W (2020) Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care 26(8 Suppl):S177–S183
pubmed: 32840331
Wong LS et al (2004) Effects of “second-hand” smoke on structure and function of fibroblasts, cells that are critical for tissue repair and remodeling. BMC Cell Biol 5:1–14
doi: 10.1186/1471-2121-5-13
Wu S et al (2008) Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology 75(3):186–194
pubmed: 18550916 doi: 10.1159/000124979
Wu C-C et al (2016) Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Sci Rep 6(1):27358
pubmed: 27264956 pmcid: 4893631 doi: 10.1038/srep27358
Wu X et al (2022) Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 20:2986–3003
pubmed: 35782737 pmcid: 9218169 doi: 10.1016/j.csbj.2022.06.015
Xu H, Li Z, Si J (2014) Nanocarriers in gene therapy: a review. J Biomed Nanotechnol 10(12):3483–3507
pubmed: 26000367 doi: 10.1166/jbn.2014.2044
Yan R, Vassar R (2014) Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13(3):319–329
pubmed: 24556009 pmcid: 4086426 doi: 10.1016/S1474-4422(13)70276-X
Yang S et al (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Investig 127(7):2719–2724
pubmed: 28628038 pmcid: 5490741 doi: 10.1172/JCI92087
Yang W et al (2020) Current and projected future economic burden of Parkinson’s disease in the US. npj Parkinson’s Disease 6(1):15
pubmed: 32665974 pmcid: 7347582 doi: 10.1038/s41531-020-0117-1
Yang S et al (2021) Long non-coding RNAs in neurodegenerative diseases. Neurochem Int 148:105096
pubmed: 34118305 doi: 10.1016/j.neuint.2021.105096
Ye T et al (2021) Efficient manipulation of gene dosage in human iPSCs using CRISPR/Cas9 nickases. Commun Biol 4(1):195
pubmed: 33580208 pmcid: 7881037 doi: 10.1038/s42003-021-01722-0
Yin H et al (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35(12):1179–1187
pubmed: 29131148 pmcid: 5901668 doi: 10.1038/nbt.4005
Yoon K-J et al (2014) Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 15(1):79–91
pubmed: 24996170 pmcid: 4237009 doi: 10.1016/j.stem.2014.05.003
Yoon HH et al (2022) CRISPR-Cas9 gene editing protects from the A53T-SNCA overexpression-induced pathology of Parkinson’s disease in vivo. CRISPR J 5(1):95–108
pubmed: 35191750 doi: 10.1089/crispr.2021.0025
Yoshimoto Y et al (1995) Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson’s disease. Brain Res 691(1–2):25–36
pubmed: 8590062 doi: 10.1016/0006-8993(95)00596-I
Zahir-Jouzdani F et al (2018) siRNA delivery for treatment of degenerative diseases, new hopes and challenges. J Drug Deliv Sci Technol 45:428–441
doi: 10.1016/j.jddst.2018.04.001
Zahra W et al (2020) The global economic impact of neurodegenerative diseases: opportunities and challenges. In: Bioeconomy for Sustainable Development, Singapore: Springer, pp 333–345
Zhang P et al (2012) Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer’s disease. Neural Regen Res 7(4):245
pubmed: 25806063 pmcid: 4353094
Zhang Q et al (2014) Caspase-3 short hairpin RNAs: a potential therapeutic agent in neurodegeneration of aluminum-exposed animal model. Curr Alzheimer Res 11(10):961–970
pubmed: 25387335 doi: 10.2174/1567205011666141107150938
Zhang W et al (2018) Knockdown of BACE1-AS by siRNA improves memory and learning behaviors in Alzheimer’s disease animal model. Exp Ther Med 16(3):2080–2086
pubmed: 30186443 pmcid: 6122303
Zhang L et al (2020) Knockdown of long non-coding RNA AL049437 mitigates MPP+-induced neuronal injury in SH-SY5Y cells via the microRNA-205-5p/MAPK1 axis. Neurotoxicology 78:29–35
pubmed: 32057949 doi: 10.1016/j.neuro.2020.02.004
Zhang Y et al (2021a) The role of non-coding RNAs in Alzheimer’s disease: from regulated mechanism to therapeutic targets and diagnostic biomarkers. Front Aging Neurosci 13:654978
pubmed: 34276336 pmcid: 8283767 doi: 10.3389/fnagi.2021.654978
Zhang L et al (2021b) Therapeutic reversal of Huntington’s disease by in vivo self-assembled siRNAs. Brain 144(11):3421–3435
pubmed: 34918046 pmcid: 8677541 doi: 10.1093/brain/awab354
Zhang Z-Y et al (2023) TRIM11 protects against tauopathies and is down-regulated in Alzheimer’s disease. Science 381(6656):eadd6696
pubmed: 37499037 doi: 10.1126/science.add6696
Zhao HT et al (2017) LRRK2 antisense oligonucleotides ameliorate α-synuclein inclusion formation in a Parkinson’s disease mouse model. Molecular Therapy-Nucleic Acids 8:508–519
pubmed: 28918051 pmcid: 5573879 doi: 10.1016/j.omtn.2017.08.002
Zhao Z et al (2020) Targeting strategies for tissue-specific drug delivery. Cell 181(1):151–167
pubmed: 32243788 doi: 10.1016/j.cell.2020.02.001
Zharikov AD et al (2015) shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson’s disease model. J Clin Investig 125(7):2721–2735
pubmed: 26075822 pmcid: 4563670 doi: 10.1172/JCI64502
Zhou X et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184
pubmed: 25274063 doi: 10.1007/s00018-014-1744-7
Zhou S et al (2020) Long non-coding RNA NORAD functions as a microRNA-204-5p sponge to repress the progression of Parkinson’s disease in vitro by increasing the solute carrier family 5 member 3 expression. IUBMB Life 72(9):2045–2055
pubmed: 32687247 doi: 10.1002/iub.2344

Auteurs

Pouya Ebrahimi (P)

Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Elham Davoudi (E)

Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA.

Razieh Sadeghian (R)

Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Amin Zaki Zadeh (AZ)

Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Emran Razmi (E)

Arak University of Medical Sciences, Arak, Iran.

Reza Heidari (R)

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Mohammad Hossein Morowvat (MH)

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. mhmorowvat@sums.ac.ir.
Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. mhmorowvat@sums.ac.ir.

Issa Sadeghian (I)

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. sadeghian_i@sums.ac.ir.

Classifications MeSH