Methods for investigating STAT3 regulation of lysosomal function in mammary epithelial cells.
Cell death
Lysoptosis
Lysosome
Lysosome-mediated programmed cell death
Mammary gland
STAT3 signalling
Journal
Journal of mammary gland biology and neoplasia
ISSN: 1573-7039
Titre abrégé: J Mammary Gland Biol Neoplasia
Pays: United States
ID NLM: 9601804
Informations de publication
Date de publication:
18 May 2024
18 May 2024
Historique:
received:
31
08
2023
accepted:
02
05
2024
medline:
18
5
2024
pubmed:
18
5
2024
entrez:
18
5
2024
Statut:
epublish
Résumé
The transcription factor STAT3 is activated by multiple cytokines and other extrinsic factors. It plays a key role in immune and inflammatory responses and, when dysregulated, in tumourigenesis. STAT3 is also an indispensable mediator of the cell death process that occurs during post-lactational regression of the mammary gland, one of the most dramatic examples of physiological cell death in adult mammals. During this involution of the gland, STAT3 powerfully enhances the lysosomal system to efficiently remove superfluous milk-producing mammary epithelial cells via a lysosomal-mediated programmed cell death pathway. The lysosome is a membrane-enclosed cytoplasmic organelle that digests and recycles cellular waste, with an important role as a signalling centre that monitors cellular metabolism. Here, we describe key strategies for investigating the role of STAT3 in regulating lysosomal function using a mammary epithelial cell culture model system. These include protocols for lysosome enrichment and enzyme activity assays, in addition to microscopic analyses of the vesicular compartment in cell lines. Collectively, these approaches provide the tools to investigate multiple aspects of lysosome biogenesis and function, and to define both direct and indirect roles for STAT3.
Identifiants
pubmed: 38761238
doi: 10.1007/s10911-024-09563-3
pii: 10.1007/s10911-024-09563-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11Subventions
Organisme : Wellcome Trust
ID : 204813/Z/16/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N022963/1
Pays : United Kingdom
Informations de copyright
© 2024. The Author(s).
Références
Philp JAC, Burdon TG, Watson CJ. Differential activation of STATs 3 and 5 during mammary gland development. FEBS Lett. 1996;396:77–80. https://doi.org/10.1016/0014-5793(96)01069-1 .
doi: 10.1016/0014-5793(96)01069-1
pubmed: 8906870
Watson CJ. Stat Transcription Factors in Mammary Gland Development and Tumorigenesis. J Mammary Gland Biol Neoplasia. 2001;6:115–27. https://doi.org/10.1023/A:1009524817155 .
doi: 10.1023/A:1009524817155
pubmed: 11467447
Chapman RS, Lourenco PC, Tonner E, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13:2604–16.
doi: 10.1101/gad.13.19.2604
pubmed: 10521404
pmcid: 317074
Kreuzaler PA, Staniszewska AD, Li W, et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol. 2011;13:303–9. https://doi.org/10.1038/ncb2171 .
doi: 10.1038/ncb2171
pubmed: 21336304
Jeong J, Lee J, Talaia G, et al. Intracellular calcium links milk stasis to lysosome-dependent cell death during early mammary gland involution. Cell Mol Life Sci. 2024;81:29. https://doi.org/10.1007/s00018-023-05044-8 .
doi: 10.1007/s00018-023-05044-8
pubmed: 38212474
pmcid: 10784359
Jeong J, Kim W, Hens J, et al. NHERF1 Is Required for Localization of PMCA2 and Suppression of Early Involution in the Female Lactating Mammary Gland. Endocrinology. 2019;160:1797–810. https://doi.org/10.1210/en.2019-00230 .
doi: 10.1210/en.2019-00230
pubmed: 31087002
pmcid: 6619491
Rivera OC, Hennigar SR, Kelleher SL. ZnT2 is critical for lysosome acidification and biogenesis during mammary gland involution. Am J Physiol Integr Comp Physiol. 2018;315:R323–35. https://doi.org/10.1152/ajpregu.00444.2017 .
doi: 10.1152/ajpregu.00444.2017
Sargeant TJ, Lloyd-Lewis B, Resemann HK, et al. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol. 2014;16:1057–68. https://doi.org/10.1038/ncb3043 .
doi: 10.1038/ncb3043
pubmed: 25283994
pmcid: 4216597
Ballabio A, Bonifacino JS. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 2020;21:101–18.
doi: 10.1038/s41580-019-0185-4
pubmed: 31768005
Martínez-Fábregas J, Prescott A, van Kasteren S, et al. Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nat Commun. 2018;9:1–16. https://doi.org/10.1038/s41467-018-07741-6 .
doi: 10.1038/s41467-018-07741-6
Clarkson RWE, Watson CJ. Microarray analysis of the involution switch. J Mammary Gland Biol Neoplasia. 2003;8:309–19. https://doi.org/10.1023/B:JOMG.0000010031.53310.92 .
doi: 10.1023/B:JOMG.0000010031.53310.92
pubmed: 14973375
Clarkson RWE, Wayland MT, Lee J, et al. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6:R92–109.
doi: 10.1186/bcr754
pubmed: 14979921
Clarkson RWE, Boland MP, Kritikou EA, et al. The genes induced by signal transducer and activators of transcription (STAT)3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol. 2006;20:675–85. https://doi.org/10.1210/me.2005-0392 .
doi: 10.1210/me.2005-0392
pubmed: 16293640
Pensa S, Neoh K, Resemann HK, et al. The PI3K regulatory subunits p55α and p50α regulate cell death in vivo. Cell Death Differ. 2014;21:1442–50. https://doi.org/10.1038/cdd.2014.59 .
doi: 10.1038/cdd.2014.59
pubmed: 24902901
pmcid: 4130657
Lloyd-Lewis B, Krueger CC, Sargeant TJ, et al. Stat3-mediated alterations in lysosomal membrane protein composition. J Biol Chem. 2018;293:4244–61. https://doi.org/10.1074/jbc.RA118.001777 .
doi: 10.1074/jbc.RA118.001777
pubmed: 29343516
pmcid: 5868265
Pensa S, Lloyd-Lewis B, Sargeant TJ, et al. Signal transducer and activator of transcription 3 and the phosphatidylinositol 3-kinase regulatory subunits p55α and p50α regulate autophagy in vivo. FEBS J. 2014;281:4557–67. https://doi.org/10.1111/febs.13035 .
doi: 10.1111/febs.13035
pubmed: 25205393
pmcid: 4364409
Hughes K, Wickenden JA, Allen JE, Watson CJ. Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during post-lactational regression. J Pathol. 2012;227:106–17. https://doi.org/10.1002/path.3961 .
doi: 10.1002/path.3961
pubmed: 22081431
pmcid: 3477635
Lloyd-Lewis B, Sargeant TJ, Kreuzaler PA, et al. Analysis of the involuting mouse mammary gland: An in vivo model for cell death. In: Martin, F., Stein, T., Howlin, J. (eds) Mammary Gland Development. Methods in Molecular Biology, vol 1501. New York: Humana Press; 2017. p. 165–86. https://doi.org/10.1007/978-1-4939-6475-8_7 .
Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–12. https://doi.org/10.1083/jcb.17.1.208 .
doi: 10.1083/jcb.17.1.208
pubmed: 13986422
pmcid: 2106263
Reichmann E, Ball R, Groner B, Friis RR. New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally. J Cell Biol. 1989;108:1127–38. https://doi.org/10.1083/jcb.108.3.1127 .
doi: 10.1083/jcb.108.3.1127
pubmed: 2466037
Becken U, Jeschke A, Veltman K, Haas A. Cell-free fusion of bacteria-containing phagosomes with endocytic compartments. Proc Natl Acad Sci. 2010;107:20726–31.
doi: 10.1073/pnas.1007295107
pubmed: 21071675
pmcid: 2996438
Walker MW, Lloyd-Evans E. Chapter 2 - A rapid method for the preparation of ultrapure, functional lysosomes using functionalized superparamagnetic iron oxide nanoparticles. In: Frances P, Nick P, editors. Methods in Cell Biology. Academic Press; 2015. p. 21–43.
Diettrich O, Mills K, Johnson AW, et al. Application of magnetic chromatography to the isolation of lysosomes from fibroblasts of patients with lysosomal storage disorders. FEBS Lett. 1998;441:369–72. https://doi.org/10.1016/s0014-5793(98)01578-6 .
doi: 10.1016/s0014-5793(98)01578-6
pubmed: 9891973
Jahreiss L, Renna M, Bittman R, et al. 1-O-Hexadecyl-2-O-methyl-3-O-(2′-acetamido-2′-deoxy-∃-D- glucopyranosyl)-sn-glycerol (Gln) induces cell death with more autophagosomes which is autophagy-independent. Autophagy. 2009;5:835–46. https://doi.org/10.4161/auto.9120 .
doi: 10.4161/auto.9120
pubmed: 19550143
Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91. https://doi.org/10.1038/nbt.3437 .
doi: 10.1038/nbt.3437
pubmed: 26780180
pmcid: 4744125
Jones JCR. Pre- and post-embedding immunogold labeling of tissue sections. In: Schwartzbach, S., Skalli, O., Schikorski, T. (eds) High-Resolution Imaging of Cellular Proteins. Methods in Molecular Biology, vol 1474. New York: Humana Press; 2016. p. 291–307. https://doi.org/10.1007/978-1-4939-6352-2_19 .