The integrated stress response promotes neural stem cell survival under conditions of mitochondrial dysfunction in neurodegeneration.
Hypoxia
Opa1
adult neurogenesis
intergrated stress response
metabolic adaptation
mitochondrial dynamics
neurodegeneration
Journal
Aging cell
ISSN: 1474-9726
Titre abrégé: Aging Cell
Pays: England
ID NLM: 101130839
Informations de publication
Date de publication:
16 May 2024
16 May 2024
Historique:
revised:
27
02
2024
received:
29
08
2023
accepted:
18
03
2024
medline:
17
5
2024
pubmed:
17
5
2024
entrez:
17
5
2024
Statut:
aheadofprint
Résumé
Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14165Subventions
Organisme : CIHR
ID : GR000324(154309)
Pays : Canada
Organisme : CIHR
ID : 438989
Pays : Canada
Organisme : Canada Research Chair (CRC)
Organisme : Mito2i fellowship
Informations de copyright
© 2024 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
Références
Ahola, S., Rivera Mejias, P., Hermans, S., Chandragiri, S., Giavalisco, P., Nolte, H., & Langer, T. (2022). OMA1‐mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metabolism, 34(11), 1875–1891 e1877. https://doi.org/10.1016/j.cmet.2022.08.017
Alavi, M. V., & Fuhrmann, N. (2013). Dominant optic atrophy, OPA1, and mitochondrial quality control: Understanding mitochondrial network dynamics. Molecular Neurodegeneration, 8, 32. https://doi.org/10.1186/1750‐1326‐8‐32
Alexander, C., Votruba, M., Pesch, U. E., Thiselton, D. L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo‐Kottler, B., Auburger, G., Bhattacharya, S. S., & Wissinger, B. (2000). OPA1, encoding a dynamin‐related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genetics, 26(2), 211–215. https://doi.org/10.1038/79944
Aloi, M. S., Thompson, S. J., Quartapella, N., & Noebels, J. L. (2022). Loss of functional system x‐c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna 1‐KO mice. Cell Reports, 41(8), 111696. https://doi.org/10.1016/j.celrep.2022.111696
Andersen, J., Urbán, N., Achimastou, A., Ito, A., Simic, M., Ullom, K., Martynoga, B., Lebel, M., Göritz, C., Frisén, J., Nakafuku, M., & Guillemot, F. (2014). A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron, 83(5), 1085–1097. https://doi.org/10.1016/j.neuron.2014.08.004
Artegiani, B., Lyubimova, A., Muraro, M., van Es, J. H., van Oudenaarden, A., & Clevers, H. (2017). A single‐cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Reports, 21(11), 3271–3284. https://doi.org/10.1016/j.celrep.2017.11.050
Baker, N., Wade, S., Triolo, M., Girgis, J., Chwastek, D., Larrigan, S., Feige, P., Fujita, R., Crist, C., Rudnicki, M. A., Burelle, Y., & Khacho, M. (2022). The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell, 29(9), 1315–1332.e9. https://doi.org/10.1016/j.stem.2022.07.010
Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F., & Newell, E. W. (2018). Dimensionality reduction for visualizing single‐cell data using UMAP. Nature Biotechnology, 37, 38–44. https://doi.org/10.1038/nbt.4314
Beckervordersandforth, R., Ebert, B., Schäffner, I., Moss, J., Fiebig, C., Shin, J., Moore, D. L., Ghosh, L., Trinchero, M. F., Stockburger, C., Friedland, K., Steib, K., Von Wittgenstein, J., Keiner, S., Redecker, C., Hölter, S. M., Xiang, W., Wurst, W., Jagasia, R., … Lie, D. C. (2017). Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron, 93(6), 1518. https://doi.org/10.1016/j.neuron.2017.03.008
Berg, D. A., Su, Y., Jimenez‐Cyrus, D., Patel, A., Huang, N., Morizet, D., Lee, S., Shah, R., Ringeling, F. R., Jain, R., Epstein, J. A., Wu, Q. F., Canzar, S., Ming, G. L., Song, H., & Bond, A. M. (2019). A common embryonic origin of stem cells drives developmental and adult neurogenesis. Cell, 177(3), 654–668.e15. https://doi.org/10.1016/j.cell.2019.02.010
Bergen, V., Soldatov, R. A., Kharchenko, P. V., & Theis, F. J. (2021). RNA velocity‐current challenges and future perspectives. Molecular Systems Biology, 17(8), e10282. https://doi.org/10.15252/msb.202110282
Cancino, G. I., Yiu, A. P., Fatt, M. P., Dugani, C. B., Flores, E. R., Frankland, P. W., Josselyn, S. A., Miller, F. D., & Kaplan, D. R. (2013). p63 regulates adult neural precursor and newly born neuron survival to control hippocampal‐dependent behavior. The Journal of Neuroscience, 33(31), 12569–12585. https://doi.org/10.1523/JNEUROSCI.1251‐13.2013
Castro, D. S., Martynoga, B., Parras, C., Ramesh, V., Pacary, E., Johnston, C., Drechsel, D., Lebel‐Potter, M., Garcia, L. G., Hunt, C., Dolle, D., Bithell, A., Ettwiller, L., Buckley, N., & Guillemot, F. (2011). A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome‐wide characterization of its targets. Genes & Development, 25(9), 930–945. https://doi.org/10.1101/gad.627811
Cicero, S. A., Johnson, D., Reyntjens, S., Frase, S., Connell, S., Chow, L. M., Baker, S. J., Sorrentino, B. P., & Dyer, M. A. (2009). Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6685–6690. https://doi.org/10.1073/pnas.0901596106
Costa‐Mattioli, M., & Walter, P. (2020). The integrated stress response: From mechanism to disease. Science, 368(6489), eaat5314. https://doi.org/10.1126/science.aat5314
Delettre, C., Lenaers, G., Griffoin, J. M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc‐Carel, C., Perret, E., Astarie‐Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J., & Hamel, C. P. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin‐related protein, is mutated in dominant optic atrophy. Nature Genetics, 26(2), 207–210. https://doi.org/10.1038/79936
Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nature Reviews Neuroscience, 11(5), 339–350. https://doi.org/10.1038/nrn2822
Denoth‐Lippuner, A., & Jessberger, S. (2021). Formation and integration of new neurons in the adult hippocampus. Nature Reviews. Neuroscience, 22(4), 223–236. https://doi.org/10.1038/s41583‐021‐00433‐z
Fessler, E., Eckl, E. M., Schmitt, S., Mancilla, I. A., Meyer‐Bender, M. F., Hanf, M., Philippou‐Massier, J., Krebs, S., Zischka, H., & Jae, L. T. (2020). A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature, 579(7799), 433–437. https://doi.org/10.1038/s41586‐020‐2076‐4
Fong, B. C., Chakroun, I., Iqbal, M. A., Paul, S., Bastasic, J., O'Neil, D., Yakubovich, E., Bejjani, A. T., Ahmadi, N., Carter, A., Clark, A., Leone, G., Park, D. S., Ghanem, N., Vandenbosch, R., & Slack, R. S. (2022). The Rb/E2F axis is a key regulator of the molecular signatures instructing the quiescent and activated adult neural stem cell state. Cell Reports, 41(5), 111578. https://doi.org/10.1016/j.celrep.2022.111578
Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G. V., Rudka, T., Bartoli, D., Polishuck, R. S., Danial, N. N., De Strooper, B., & Scorrano, L. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell, 126(1), 177–189. https://doi.org/10.1016/j.cell.2006.06.025
Furutachi, S., Miya, H., Watanabe, T., Kawai, H., Yamasaki, N., Harada, Y., Imayoshi, I., Nelson, M., Nakayama, K. I., Hirabayashi, Y., & Gotoh, Y. (2015). Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nature Neuroscience, 18(5), 657–665. https://doi.org/10.1038/nn.3989
Guo, X., Aviles, G., Liu, Y., Tian, R., Unger, B. A., Lin, Y. T., & Kampmann, M. (2020). Mitochondrial stress is relayed to the cytosol by an OMA1‐DELE1‐HRI pathway. Nature, 579(7799), 427–432. https://doi.org/10.1038/s41586‐020‐2078‐2
Han, J., Back, S. H., Hur, J., Lin, Y. H., Gildersleeve, R., Shan, J., Yuan, C. L., Krokowski, D., Wang, S., Hatzoglou, M., Kilberg, M. S., Sartor, M. A., & Kaufman, R. J. (2013). ER‐stress‐induced transcriptional regulation increases protein synthesis leading to cell death. Nature Cell Biology, 15(5), 481–490. https://doi.org/10.1038/ncb2738
He, L., Vanlandewijck, M., Raschperger, E., Andaloussi Mäe, M., Jung, B., Lebouvier, T., Ando, K., Hofmann, J., Keller, A., & Betsholtz, C. (2016). Analysis of the brain mural cell transcriptome. Scientific Reports, 6, 35108. https://doi.org/10.1038/srep35108
Hebert, J. M., & McConnell, S. K. (2000). Targeting of cre to the Foxg1 (BF‐1) locus mediates loxP recombination in the telencephalon and other developing head structures. Developmental Biology, 222(2), 296–306. https://doi.org/10.1006/dbio.2000.9732
Inak, G., Rybak‐Wolf, A., Lisowski, P., Pentimalli, T. M., Jüttner, R., Glažar, P., Uppal, K., Bottani, E., Brunetti, D., Secker, C., Zink, A., Meierhofer, D., Henke, M. T., Dey, M., Ciptasari, U., Mlody, B., Hahn, T., Berruezo‐Llacuna, M., Karaiskos, N., … Prigione, A. (2021). Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nature Communications, 12(1), 1929. https://doi.org/10.1038/s41467‐021‐22117‐z
Iqbal, M. A., Fong, B. C., & Slack, R. S. (2022). Direct FACS isolation of neural stem/progenitor lineages from the adult brain. Methods in Molecular Biology, 2515, 117–127. https://doi.org/10.1007/978‐1‐0716‐2409‐8_8
Iwata, R., Casimir, P., & Vanderhaeghen, P. (2020). Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science, 369(6505), 858–862. https://doi.org/10.1126/science.aba9760
Kalinina, A., & Lagace, D. (2022). Single‐cell and single‐nucleus RNAseq analysis of adult neurogenesis. Cells, 11(10), 1633. https://doi.org/10.3390/cells11101633
Kane, M. S., Alban, J., Desquiret‐Dumas, V., Gueguen, N., Ishak, L., Ferre, M., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Lenaers, G., Reynier, P., & Chevrollier, A. (2017). Autophagy controls the pathogenicity of OPA1 mutations in dominant optic atrophy. Journal of Cellular and Molecular Medicine, 21(10), 2284–2297. https://doi.org/10.1111/jcmm.13149
Kee, N., Teixeira, C. M., Wang, A. H., & Frankland, P. W. (2007). Preferential incorporation of adult‐generated granule cells into spatial memory networks in the dentate gyrus. Nature Neuroscience, 10(3), 355–362. https://doi.org/10.1038/nn1847
Khacho, M., Clark, A., Svoboda, D. S., Azzi, J., MacLaurin, J. G., Meghaizel, C., Sesaki, H., Lagace, D. C., Germain, M., Harper, M. E., Park, D. S., & Slack, R. S. (2016). Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell, 19(2), 232–247. https://doi.org/10.1016/j.stem.2016.04.015
Khacho, M., Clark, A., Svoboda, D. S., MacLaurin, J. G., Lagace, D. C., Park, D. S., & Slack, R. S. (2017). Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Human Molecular Genetics, 26(17), 3327–3341. https://doi.org/10.1093/hmg/ddx217
Khacho, M., Harris, R., & Slack, R. S. (2019). Mitochondria as central regulators of neural stem cell fate and cognitive function. Nature Reviews. Neuroscience, 20(1), 34–48. https://doi.org/10.1038/s41583‐018‐0091‐3
Khacho, M., & Slack, R. S. (2017). Mitochondrial activity in the regulation of stem cell self‐renewal and differentiation. Current Opinion in Cell Biology, 49, 1–8. https://doi.org/10.1016/j.ceb.2017.11.003
Kijima, K., Numakura, C., Izumino, H., Umetsu, K., Nezu, A., Shiiki, T., Ogawa, M., Ishizaki, Y., Kitamura, T., Shozawa, Y., & Hayasaka, K. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot‐Marie‐tooth neuropathy type 2A. Human Genetics, 116(1–2), 23–27. https://doi.org/10.1007/s00439‐004‐1199‐2
La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber, K., Kastriti, M. E., Lönnerberg, P., Furlan, A., Fan, J., Borm, L. E., Liu, Z., Van Bruggen, D., Guo, J., He, X., Barker, R., Sundström, E., Castelo‐Branco, G., … Kharchenko, P. V. (2018). RNA velocity of single‐cells. Nature, 560(7719), 494–498. https://doi.org/10.1038/s41586‐018‐0414‐6
Lim, J. K. M., Delaidelli, A., Minaker, S. W., Zhang, H. F., Colovic, M., Yang, H., Negri, G. L., Von Karstedt, S., Lockwood, W. W., Schaffer, P., Leprivier, G., & Sorensen, P. H. (2019). Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9433–9442. https://doi.org/10.1073/pnas.1821323116
Liu, Y., Fong, B., Harris, R., McNicoll, M., Abdi, A., Cuthbert, J., Cook, D. P., Figeys, D., Wang, J., Vanderhyden, B. C., & Slack, R. S. (2022). Alterations in neural stem cell quiescence and activation in the 3xTG‐AD model of Alzheimer's Disease. bioRxiv. https://doi.org/10.1101/2022.06.08.495344
Longo, F., Benedetti, S., Zambon, A. A., Sora, M. G. N., Di Resta, C., De Ritis, D., Quattrini, A., Maltecca, F., Ferrari, M., & Previtali, S. C. (2020). Impaired turnover of hyperfused mitochondria in severe axonal neuropathy due to a novel DRP1 mutation. Human Molecular Genetics, 29(2), 177–188. https://doi.org/10.1093/hmg/ddz211
Luna, V. M., Anacker, C., Burghardt, N. S., Khandaker, H., Andreu, V., Millette, A., Leary, P., Ravenelle, R., Jimenez, J. C., Mastrodonato, A., Denny, C. A., Fenton, A. A., Scharfman, H. E., & Hen, R. (2019). Adult‐born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science, 364(6440), 578–583. https://doi.org/10.1126/science.aat8789
Maren, S., Phan, K. L., & Liberzon, I. (2013). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature Reviews. Neuroscience, 14(6), 417–428. https://doi.org/10.1038/nrn3492
McClellan, K. A., Ruzhynsky, V. A., Douda, D. N., Vanderluit, J. L., Ferguson, K. L., Chen, D., Bremner, R., Park, D. S., Leone, G., & Slack, R. S. (2007). Unique requirement for Rb/E2F3 in neuronal migration: evidence for cell cycle‐independent functions. Molecular and Cellular Biology, 27(13), 4825–4843. https://doi.org/10.1128/MCB.02100‐06
Mertens, J., Herdy, J. R., Traxler, L., Schafer, S. T., Schlachetzki, J. C. M., Böhnke, L., Reid, D. A., Lee, H., Zangwill, D., Fernandes, D. P., Agarwal, R. K., Lucciola, R., Zhou‐Yang, L., Karbacher, L., Edenhofer, F., Stern, S., Horvath, S., Paquola, A. C. M., Glass, C. K., … Gage, F. H. (2021). Age‐dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell, 28(9), 1533–1548.e6. https://doi.org/10.1016/j.stem.2021.04.004
Mizrak, D., Levitin, H. M., Delgado, A. C., Crotet, V., Yuan, J., Chaker, Z., Silva‐Vargas, V., Sims, P. A., & Doetsch, F. (2019). Single‐cell analysis of regional differences in adult V‐SVZ neural stem cell lineages. Cell Reports, 26(2), 394–406.e5. https://doi.org/10.1016/j.celrep.2018.12.044
Moreno‐Jiménez, E. P., Flor‐García, M., Terreros‐Roncal, J., Rábano, A., Cafini, F., Pallas‐Bazarra, N., Ávila, J., & Llorens‐Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nature Medicine, 25(4), 554–560. https://doi.org/10.1038/s41591‐019‐0375‐9
Patten, D. A., Wong, J., Khacho, M., Soubannier, V., Mailloux, R. J., Pilon‐Larose, K., MacLaurin, J. G., Park, D. S., McBride, H. M., Trinkle‐Mulcahy, L., Harper, M. E., Germain, M., & Slack, R. S. (2014). OPA1‐dependent cristae modulation is essential for cellular adaptation to metabolic demand. The EMBO Journal, 33(22), 2676–2691. https://doi.org/10.15252/embj.201488349
Pham, J., Cabrera, S. M., Sanchis‐Segura, C., & Wood, M. A. (2009). Automated scoring of fear‐related behavior using EthoVision software. Journal of Neuroscience Methods, 178(2), 323–326. https://doi.org/10.1016/j.jneumeth.2008.12.021
Quirós, P. M., Prado, M. A., Zamboni, N., D'Amico, D., Williams, R. W., Finley, D., Gygi, S. P., & Auwerx, J. (2017). Multi‐omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. The Journal of Cell Biology, 216(7), 2027–2045. https://doi.org/10.1083/jcb.201702058
Ramonet, D., Perier, C., Recasens, A., Dehay, B., Bové, J., Costa, V., Scorrano, L., & Vila, M. (2013). Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death and Differentiation, 20(1), 77–85. https://doi.org/10.1038/cdd.2012.95
Raposo, A. A., Vasconcelos, F. F., Drechsel, D., Marie, C., Johnston, C., Dolle, D., & Castro, D. S. (2015). Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Reports, 10, 1544–1556. https://doi.org/10.1016/j.celrep.2015.02.025
Royea, J., & Khacho, M. (2022). Examining mitochondrial morphology in mouse brains. Methods in Molecular Biology, 2515, 17–28. https://doi.org/10.1007/978‐1‐0716‐2409‐8_2
Sato, H., Tamba, M., Ishii, T., & Bannai, S. (1999). Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. The Journal of Biological Chemistry, 274(17), 11455–11458. https://doi.org/10.1074/jbc.274.17.11455
Saxe, M. D., Battaglia, F., Wang, J. W., Malleret, G., David, D. J., Monckton, J. E., Garcia, A. D. R., Sofroniew, M. V., Kandel, E. R., Santarelli, L., Hen, R., & Drew, M. R. (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17501–17506. https://doi.org/10.1073/pnas.0607207103
Schindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
Sears, S. M. S., Roberts, S. H., & Hewett, S. J. (2021). Hyperexcitability and brain morphological differences in mice lacking the cystine/glutamate antiporter, system x(c)(). Journal of Neuroscience Research, 99(12), 3339–3353. https://doi.org/10.1002/jnr.24971
Srinivas, S., Watanabe, T., Lin, C. S., William, C. M., Tanabe, Y., Jessell, T. M., & Costantini, F. (2001). Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Developmental Biology, 1, 4. https://doi.org/10.1186/1471‐213x‐1‐4
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., Hao, Y., Stoeckius, M., Smibert, P., & Satija, R. (2019). Comprehensive integration of single‐cell data. Cell, 177(7), 1888–1902.e21. https://doi.org/10.1016/j.cell.2019.05.031.
Tang, Y., Garson, K., Li, L., & Vanderhyden, B. C. (2015). Optimization of lentiviral vector production using polyethylenimine‐mediated transfection. Oncology Letters, 9(1), 55–62. https://doi.org/10.3892/ol.2014.2684
Terreros‐Roncal, J., Moreno‐Jiménez, E. P., Flor‐García, M., Rodríguez‐Moreno, C. B., Trinchero, M. F., Cafini, F., Rábano, A., & Llorens‐Martín, M. (2021). Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science, 374(6571), 1106–1113. https://doi.org/10.1126/science.abl5163
Torrence, M. E., MacArthur, M. R., Hosios, A. M., Valvezan, A. J., Asara, J. M., Mitchell, J. R., & Manning, B. D. (2021). The mTORC1‐mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife, 10, e63326. https://doi.org/10.7554/eLife.63326
Triolo, M., Wade, S., Baker, N., & Khacho, M. (2023). Evaluating mitochondrial length, volume, and cristae ultrastructure in rare mouse adult stem cell populations. STAR Protocols, 4(1), 102107. https://doi.org/10.1016/j.xpro.2023.102107
Urban, N., Blomfield, I. M., & Guillemot, F. (2019). Quiescence of adult mammalian neural stem cells: A highly regulated rest. Neuron, 104(5), 834–848. https://doi.org/10.1016/j.neuron.2019.09.026
van Galen, P., Mbong, N., Kreso, A., Schoof, E. M., Wagenblast, E., Ng, S. W. K., Krivdova, G., Jin, L., Nakauchi, H., & Dick, J. E. (2018). Integrated stress response activity Marks stem cells in Normal hematopoiesis and leukemia. Cell Reports, 25(5), 1109–1117.e5. https://doi.org/10.1016/j.celrep.2018.10.021
Vandenbosch, R., Clark, A., Fong, B. C., Omais, S., Jaafar, C., Dugal‐Tessier, D., Dhaliwal, J., Lagace, D. C., Park, D. S., Ghanem, N., & Slack, R. S. (2016). RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus: RB Controls Dentate Neurogenesis. Hippocampus, 26(11), 1379–1392. https://doi.org/10.1002/hipo.22613.
Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L., & Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010
Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D'Amico, D., Ropelle, E. R., Lutolf, M. P., Aebersold, R., Schoonjans, K., Menzies, K. J., & Auwerx, J. (2016). NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 352(6292), 1436–1443. https://doi.org/10.1126/science.aaf2693
Zhang, Z., Wakabayashi, N., Wakabayashi, J., Tamura, Y., Song, W. J., Sereda, S., Clerc, P., Polster, B. M., Aja, S. M., Pletnikov, M. V., Kensler, T. W., Shirihai, O. S., Iijima, M., Hussain, M. A., & Sesaki, H. (2011). The dynamin‐related GTPase Opa1 is required for glucose‐stimulated ATP production in pancreatic beta cells. Molecular Biology of the Cell, 22(13), 2235–2245. https://doi.org/10.1091/mbc.E10‐12‐0933
Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo, S. B., Wheeler, T. D., McDermott, G. P., Zhu, J., Gregory, M. T., Shuga, J., Montesclaros, L., Underwood, J. G., Masquelier, D. A., Nishimura, S. Y., Schnall‐Levin, M., Wyatt, P. W., Hindson, C. M., … Bielas, J. H. (2017). Massively parallel digital transcriptional profiling of single‐cells. Nature Communications, 8, 14049. https://doi.org/10.1038/ncomms14049
Zheng, X., Boyer, L., Jin, M., Mertens, J., Kim, Y., Ma, L., Ma, L., Hamm, M., Gage, F. H., & Hunter, T. (2016). Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife, 5, 13374. https://doi.org/10.7554/eLife.13374
Züchner, S., Mersiyanova, I. V., Muglia, M., Bissar‐Tadmouri, N., Rochelle, J., Dadali, E. L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., Parman, Y., Evgrafov, O., Jonghe, P. D., Takahashi, Y., Tsuji, S., Pericak‐Vance, M. A., Quattrone, A., Battologlu, E., Polyakov, A. V., … Vance, J. M. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot‐Marie‐tooth neuropathy type 2A. Nature Genetics, 36(5), 449–451. https://doi.org/10.1038/ng1341