Single-Cell Single-Molecule RNA-FISH Combined with Immunofluorescence and High-Speed and High-Resolution Scanning Analysis to Visualize the Reactivation of Latent HIV-1.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 15 5 2024
pubmed: 15 5 2024
entrez: 14 5 2024
Statut: ppublish

Résumé

Latent HIV-1 reservoirs are a major obstacle to the eradication of HIV-1. Several cure strategies have been proposed to eliminate latent reservoirs. One of the key strategies involves the reactivation of latent HIV-1 from cells using latency-reversing agents. However, currently it is unclear whether any of the latency-reversing agents are able to completely reactivate HIV-1 provirus transcription in all latent cells. An understanding of the reactivation of HIV-1 provirus at single-cell single-molecule level is necessary to fully comprehend the reactivation of HIV-1 in the reservoirs. Furthermore, since reactivable viruses in the pool of latent reservoirs are rare, combining single-cell imaging techniques with the ability to visualize a large number of reactivated single cells that express both viral RNA and proteins in a pool of uninfected and non-reactivated cells will provide unprecedented information about cell-to-cell variability in reactivation. Here, we describe the single-cell single-molecule RNA-FISH (smRNA-FISH) method to visualize HIV-1 gag RNA combined with the immunofluorescence (IF) method to detect Gag protein to characterize the reactivated cells. This method allows the visualization of subcellular localization of RNA and proteins before and after reactivation and facilitates absolute quantitation of the number of transcripts per cell using FISH-quant. In addition, we describe a high-speed and high-resolution scanning (HSHRS) fluorescence microscopy imaging method to visualize rare and reactivated cells in a pool of non-reactivated cells with high efficiency.

Identifiants

pubmed: 38743220
doi: 10.1007/978-1-0716-3862-0_4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

45-59

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S et al (2019) A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature 566(7742):120–125
doi: 10.1038/s41586-019-0898-8 pubmed: 30700913 pmcid: 6447073
Sengupta S, Siliciano RF (2018) Targeting the latent reservoir for HIV-1. Immunity 48(5):872–895
doi: 10.1016/j.immuni.2018.04.030 pubmed: 29768175 pmcid: 6196732
Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE et al (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278(5341):1295–1300
doi: 10.1126/science.278.5341.1295 pubmed: 9360927
Van Lint C, Bouchat S, Marcello A (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67
doi: 10.1186/1742-4690-10-67 pubmed: 23803414 pmcid: 3699421
Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM (2021) A review of current strategies towards the elimination of latent HIV-1 and subsequent HIV-1 cure. Curr HIV Res 19(1):14–26
pubmed: 32819259 pmcid: 8573729
Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM et al (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487(7408):482–485
doi: 10.1038/nature11286 pubmed: 22837004 pmcid: 3704185
Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155(3):540–551
doi: 10.1016/j.cell.2013.09.020 pubmed: 24243014 pmcid: 3896327
Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr, Coffin JM et al (2014) Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 111(19):7078–7083
doi: 10.1073/pnas.1402873111 pubmed: 24706775 pmcid: 4024870
Mueller F, Senecal A, Tantale K, Marie-Nelly H, Ly N, Collin O et al (2013) FISH-quant: automatic counting of transcripts in 3D FISH images. Nat Methods 10(4):277–278
doi: 10.1038/nmeth.2406 pubmed: 23538861

Auteurs

Rajiv Pathak (R)

Department of Genetics and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.

Carolina Eliscovich (C)

Department of Medicine (Hepatology), and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.

Robert H Singer (RH)

Department of Cell Biology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.

Ganjam V Kalpana (GV)

Department of Genetics and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. ganjam.kalpana@einsteinmed.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH