Umbelliferone reduces inflammation and ligature-induced osteoclastic alveolar bone resorption in mice.
NF‐kappa B
cathepsin K
coumarins
cytokine
periodontitis
tartrate‐resistant acid phosphatase
Journal
Journal of periodontal research
ISSN: 1600-0765
Titre abrégé: J Periodontal Res
Pays: United States
ID NLM: 0055107
Informations de publication
Date de publication:
14 May 2024
14 May 2024
Historique:
revised:
08
04
2024
received:
18
07
2023
accepted:
12
04
2024
medline:
15
5
2024
pubmed:
15
5
2024
entrez:
14
5
2024
Statut:
aheadofprint
Résumé
This study aimed to investigate the effects of Umbelliferone (UMB) on the inflammation underlying alveolar bone resorption in mouse periodontitis. Male Swiss mice subjected to a ligature of molars were grouped as non-treated (NT), received UMB (15, 45, or 135 mg/kg) or saline daily for 7 days, respectively, and were compared with naïve mice as control. Gingival tissues were evaluated by myeloperoxidase (MPO) activity and interleukin-1β level by ELISA. The bone resorption was directly assessed on the region between the cement-enamel junction and the alveolar bone crest. Microscopically, histomorphometry of the furcation region, immunofluorescence for nuclear factor-kappa B (NF-ĸB), and immunohistochemistry for tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were performed. Systemically, body mass variation and leukogram were analyzed. Periodontitis significantly increased MPO activity, interleukin-1β level, and NF-ĸB+ immunofluorescence, and induced severe alveolar bone and furcation resorptions, besides increased TRAP+ and CTSK+ cells compared with naïve. UMB significantly prevented the inflammation by reducing MPO activity, interleukin-1β level, and NF-ĸB+ intensity, besides reduction of resorption of alveolar bone and furcation area, and TRAP+ and CTSK+ cells compared with the NT group. Periodontitis or UMB treatment did not affect the animals systemically. UMB improved periodontitis by reducing inflammation and bone markers.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Council for Scientific and Technological Development
Organisme : Institutional Scientific Initiation Program at the Federal University of Ceará
Organisme : Coordination for the Improvement of Higher Education Personnel
Informations de copyright
© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and Peri‐implant diseases and conditions. J Periodontol. 2018;89(1):173‐182.
Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis ‐ a comprehensive review. J Clin Periodontol. 2017;44:94‐105.
Van Dyke TE. Pro‐resolving mediators in the regulation of periodontal disease. Mol Asp Med. 2017;58:21‐36.
Lundmark A, Hu YOO, Huss M, Johannsen G, Andersson AF, Yucel‐Lindberg T. Identification of salivary microbiota and its association with host inflammatory mediators in periodontitis. Front Cell Infect Microbiol. 2019;9(216):1‐13.
Li W, Zhang Z, Wang ZM. Differential immune cell infiltration between healthy periodontal and chronic periodontitis tissues. BMC Oral Health. 2020;20(293):1‐10.
Motedayyen H, Ghotloo S, Saffari M, Sattari M, Amid R. Evaluation of MicroRNA‐146a and its targets in gingival tissues of patients with chronic periodontitis. J Periodontol. 2015;86(12):1380‐1385.
Rangbulla V, Nirola A, Gupta M, Batra P, Gupta M. Salivary IgA, interleukin‐1β and MMP‐8 as salivary biomarkers in chronic periodontitis patients. Chin J Dent Res. 2017;20:43‐51.
Mcdevitt MJ, Wang HY, Knobelman C, et al. Interleukin‐1 genetic association with periodontitis in clinical practice. J Periodontol. 2000;71:156‐163.
Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin‐1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci. 2020;12(2):1‐9.
Tsukasaki M. RANKL and osteoimmunology in periodontitis. J Bone Miner Metab. 2021;39(1):82‐90.
Ren J, Fok MR, Zhang Y, Han B, Lin Y. The role of non‐steroidal anti‐inflammatory drugs as adjuncts to periodontal treatment and in periodontal regeneration. J Transl Med. 2023;21(1):1‐14.
Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol. 2000;2017(75):152‐188.
Cosgarea R, Eick S, Jepsen S, et al. Microbiological and host‐derived biomarker evaluation following non‐surgical periodontal therapy with short‐term administration of systemic antimicrobials: secondary outcomes of an RCT. Sci Rep. 2020;10(1):1‐16.
Colombo APV, do Souto RM, Araújo LL, et al. Antimicrobial resistance and virulence of subgingival staphylococci isolated from periodontal health and diseases. Sci Rep. 2023;13(1):1‐10.
Oduncuoglu BF, Kayar NA, Haliloglu S, Serpek B, Ataoglu T, Alptekin NO. Effects of a cyclic NSAID regimen on levels of gingival crevicular fluid prostaglandin E2 and interleukin‐1β: a 6‐month randomized controlled clinical trial. Niger J Clin Pract. 2018;21(5):658‐666.
Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti‐inflammatory drugs. Gastroenterologia. 2018;154(3):500‐514.
Vo TTT, Chu PM, Tuan VP, Te JS, Lee IT. The promising role of antioxidant phytochemicals in the prevention and treatment of periodontal disease via the inhibition of oxidative stress pathways: updated insights. Antioxidants (Basel). 2020;9(12):1211.
Leal LKAM, Ferreira AAG, Bezerra GA, Matos FJA, Viana GSB. Antinociceptive, anti‐inflammatory and bronchodilator activities of Brazilian medicinal plants containing coumarin: a comparative study. J Ethnopharmacol. 2000;70:151‐159.
Zhao D, MsN I, Ahn BR, Jung HA, Kim BW, Choi JS. In vitro antioxidant and anti‐inflammatory activities of Angelica decursiva. Arch Pharm Res. 2012;35:179‐192.
Lončar M, Jakovljević M, Subarić D, et al. Coumarins in food and methods of their determination. Foods. 2020;9(645):1‐34.
Ouyang L, Dan Y, Shao Z, et al. Effect of umbelliferone on adjuvant‐induced arthritis in rats by MAPK/NF‐κB pathway. Drug Des Devel Ther. 2019;13:1163‐1170.
Wu G, Nie W, Wang Q, et al. Umbelliferone ameliorates complete Freund adjuvant‐induced arthritis via reduction of NF‐κB signaling pathway in osteoclast differentiation. Inflammation. 2021;44(4):1315‐1329.
Yin J, Wang H, Lu G. Umbelliferone alleviates hepatic injury in diabetic db/db mice via inhibiting inflammatory response and activating Nrf2‐mediated antioxidant. Biosci Rep. 2018;38(4):1‐10.
Lima V, Bezerra MM, Alencar VBM, et al. Effects of chlorpromazine on alveolar bone loss in experimental periodontal disease in rats. Eur J Oral Sci. 2000;108(2):123‐129.
Kim AR, Ji‐Hye KIM, Choi YH, et al. The presence of neutrophils causes RANKL expression in periodontal tissue, giving rise to osteoclast formation. J Periodontal Res. 2020;55(6):868‐876.
Kuhr A, Popa‐Wagner A, Scmoll H, Schwahn C, Kocher T. Observations on experimental marginal periodontitis in rats. J Periodontal Res. 2004;39(2):101‐106.
Lima V, Melo IM, Taira TM, et al. Uncaria tomentosa reduces osteoclastic bone loss in vivo. Phytomedicine. 2020;79:1‐9.
Luo K, Ma S, Guo J, Huang Y, Yan F, Xiao Y. Association between postmenopausal osteoporosis and experimental periodontitis. Biomed Res Int. 2014;2014:1‐7.
Bradley PP, Christensen RD, Rothstein G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood. 1982;60(3):618‐622.
Lima V, Brito GAC, Cunha FDQ, et al. Effects of the tumour necrosis factor‐α inhibitors pentoxifylline and thalidomide in short‐term experimental oral mucositis in hamsters. Eur J Oral Sci. 2005;113(3):210‐217.
Cunha FQ, Boukili MA, Motta JI, Vargaftig BB, Ferreira SH. Blockade by fenspiride of endotoxin‐induced neutrophil migration in the rat. Eur J Pharmacol. 1993;238(1):47‐52.
Handala L, Fiore T, Rouillé Y, Helle F. QuantIF: an ImageJ macro to automatically determine the percentage of infected cells after immunofluorescence. Viruses. 2019;11(2):1‐4.
Yuce HB, Karatas O, Turkal HA, et al. The effect of melatonin on bone loss, diabetic control, and apoptosis in rats with diabetes with ligature‐induced periodontitis. J Periodontol. 2016;87(4):e35‐e43.
Pan W, Yin W, Yang L, et al. Inhibition of Ctsk alleviates periodontitis and comorbid rheumatoid arthritis via downregulation of the TLR9 signaling pathway. J Clin Periodontol. 2019;46(3):286‐296. doi:10.1111/jcpe.13060
Klausen B. Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. J Periodontol. 1991;62(1):59‐73.
Kwak SC, Baek JM, Lee CH, Yoon KH, Lee MS, Kim JY. Umbelliferone prevents lipopolysaccharide‐induced bone loss and suppresses RANKL‐induced osteoclastogenesis by attenuating Akt‐c‐Fos‐NFATc1 signaling. Int J Biol Sci. 2019;15:2427‐2437.
Tavares SJS, Lima V. Bone anti‐resorptive effects of coumarins on RANKL downstream cellular signaling: a systematic review of the literature. Fitoterapia. 2021;150(104842):1‐15.
Cruz LF, Figueiredo GF, Pedro LP, et al. Corrigendum to "Umbelliferone (7‐hydroxycoumarin): a non‐toxic antidiarrheal and antiulcerogenic coumarin". Biomed Pharmacother. 2020;130:110432.
Mahmoud AM, Hozayen WG, Hasan IH, Shaban E, Bin‐Jumah M. Umbelliferone ameliorates CCl4‐induced liver fibrosis in rats by upregulating PPARγ and attenuating oxidative stress, inflammation, and TGF‐β1/Smad3 signaling. Inflammation. 2019;42(3):1103‐1116.
Li CH, Amar S. Morphometric, Histomorphometric, and microcomputed tomographic analysis of periodontal inflammatory lesions in a murine model. J Periodontol. 2007;78(6):1120‐1128.
Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW. Rheumatoid arthritis synovial fluid neutrophils drive inflammation through production of chemokines, reactive oxygen species, and neutrophil extracellular traps. Front Immunol. 2021;11:1‐14.
Maekawa S, Onizuka S, Katagiri S, et al. RNA sequencing for ligature induced periodontitis in mice revealed important role of S100A8 and S100A9 for periodontal destruction. Sci Rep. 2019;9(1):1‐12.
Dickerhof N, Huang J, Min E, et al. Myeloperoxidase inhibition decreases morbidity and oxidative stress in mice with cystic fibrosis‐like lung inflammation. Free Radic Biol Med. 2020;152:91‐99.
Younas KA, Shehzad O, Seo EK, Onder A, Khan S. Anti‐allergic activities of Umbelliferone against histamine‐and Picryl chloride‐induced ear edema by targeting Nrf2/iNOS signaling in mice. BMC Complement Med Ther. 2021;21(1):1‐17.
Oeckinghaus A, Ghosh S. The NF‐kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034.
Ghafouri‐Fard S, Gholami L, Nazer N, et al. Assessment of expression of NF‐κB‐related genes in periodontitis. Gene Reports. 2022;26:1‐7.
Arabaci T, Cicek Y, Canakci V, et al. Immunohistochemical and stereologic analysis of NF‐κB activation in chronic periodontitis. Eur J Dent. 2010;4(4):454‐461.
Melo IM, Sarte MF, Tavares SJS, et al. Calotropis procera latex protein reduces inflammation and bone loss in ligature‐induced periodontitis in male rats. Arch Oral Biol. 2023;147(105613):1‐10.
Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889‐901. doi:10.1016/s1534-5807(02)00369-6
Hayman AR, Jones SJ, Boyde A, et al. Mice lacking tartrate‐resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. 1996;122(10):3151‐3162.
Zhu G, Chen W, Tang CY, et al. Knockout and double knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Int J Biol Sci. 2022;18(14):5522‐5538.
Hayman AR. Tartrate‐resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity. 2008;41(3):218‐223.
Garnero P, Borel O, Byrjalsen I, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998;273(48):32347‐32352.
He Z, Jiang W, Jiang Y, et al. Anti‐biofilm activities of coumarin as quorum sensing inhibitor for Porphyromonas gingivalis. J Oral Microbiol. 2020;14:2055523.
Kasthuri T, Barath S, Nandhakumar M, Karutha PS. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2022;30(12):998540.
Struillou X, Boutigny H, Soueidan A, Layrolle P. Experimental animal models in periodontology: a review. Open Dent J. 2010;4:37‐47.
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and its synthetic derivatives as suitable molecules for the development of agents with biological activities: a review of their pharmacological and therapeutic potential. Pharmaceuticals (Basel). 2023;16(12):1732.