The MYB family and their response to abiotic stress in ginger (Zingiber officinale Roscoe).
Abiotic stress
Expression patterns
Ginger
Rhizome development
ZoMYB
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
11 May 2024
11 May 2024
Historique:
received:
18
08
2023
accepted:
08
05
2024
medline:
11
5
2024
pubmed:
11
5
2024
entrez:
10
5
2024
Statut:
epublish
Résumé
Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development. In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis. This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.
Sections du résumé
BACKGROUND
BACKGROUND
Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development.
RESULTS
RESULTS
In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis.
CONCLUSION
CONCLUSIONS
This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.
Identifiants
pubmed: 38730330
doi: 10.1186/s12864-024-10392-1
pii: 10.1186/s12864-024-10392-1
doi:
Substances chimiques
Transcription Factors
0
Plant Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
460Subventions
Organisme : High-level Talents of Chongqing University of Arts and Sciences
ID : P2021YL11
Organisme : Chongqing Science and Technology support projects
ID : CSTB2022NSCQ-MSX1263
Organisme : Chongqing Science and Technology support projects
ID : CSTB2023TIAD-KPX0025
Organisme : Special Funding for Chongqing Postdoctoral Research Project
ID : 2022CQBSHTB3023
Organisme : Chongqing Talents Program for Young Top Talents
ID : CQYC20220510999
Informations de copyright
© 2024. The Author(s).
Références
Chrubasik S, Pittler MH, Roufogalis BD. Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine. 2005;12(9):684–701.
pubmed: 16194058
doi: 10.1016/j.phymed.2004.07.009
Kubra IR, Rao LJM. An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Crit Rev Food Sci Nutr. 2012;52(8):651–88.
pubmed: 22591340
doi: 10.1080/10408398.2010.505689
Arcusa R, Villaño D, Marhuenda J, Cano M, Cerdà B, Zafrilla P. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front Nutr. 2022;9:809621.
pubmed: 35369082
pmcid: 8971783
doi: 10.3389/fnut.2022.809621
Zagórska J, Czernicka-Boś L, Kukula-Koch W, Szalak R, Koch W. Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome-A Review. Foods. 2022;11(21):3484.
pubmed: 36360097
pmcid: 9656818
doi: 10.3390/foods11213484
Xing HT, Jiang Y, Zou Y, Long X, Wu X, Ren Y, Li Y, Li HL. Genome-wide investigation of the AP2/ERF gene family in ginger: evolution and expression profiling during development and abiotic stresses. BMC Plant Biol. 2021;21(1):561.
pubmed: 34823471
pmcid: 8620233
doi: 10.1186/s12870-021-03329-3
Li HL, Wu L, Dong ZM, Jiang YS, Jiang SJ, Xing HT, et al. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Hortic Res. 2021;8(1):189.
pubmed: 34354044
pmcid: 8342499
doi: 10.1038/s41438-021-00627-7
Tian S, Wan Y, Jiang D, Gong M, Lin J, Xia M, Shi C, Xing HT, Li HL. Genome-Wide Identification, Characterization, and Expression Analysis of GRAS Gene Family in Ginger (Zingiber officinale Roscoe). Genes (Basel). 2022;14(1):96.
pubmed: 36672837
doi: 10.3390/genes14010096
Li C, Ng CKY, Fan LM. MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot. 2015;114:80–91.
doi: 10.1016/j.envexpbot.2014.06.014
Ogata K, Hojo H, Aimoto S, Nakai T, Nakamura H, Sarai A, Ishii S, Nishimura Y. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc Natl Acad Sci U S A. 1992;89(14):6428–32.
pubmed: 1631139
pmcid: 49514
doi: 10.1073/pnas.89.14.6428
Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet. 1997;13(2):67–73.
pubmed: 9055608
doi: 10.1016/S0168-9525(96)10049-4
Lipsick JS. One billion years of Myb. Oncogene. 1996;13(2):223–35.
pubmed: 8710361
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001;4(5):447–56.
pubmed: 11597504
doi: 10.1016/S1369-5266(00)00199-0
Chen Y, Yang X, He K, et al. The MYB Transcription Factor Superfamily of Arabidopsis: Expression Analysis and Phylogenetic Comparison with the Rice MYB Family. Plant Mol Biol. 2006;60(1):107–24.
doi: 10.1007/s11103-005-2910-y
Rosinski JA, Atchley WR. Molecular Evolution of the Myb Family of Transcription Factors: Evidence for Polyphyletic Origin. J Mol Evol. 1998;46(1):74–83.
pubmed: 9419227
doi: 10.1007/PL00006285
Jiang C, Gu J, Chopra S, Gu X, Peterson T. Ordered origin of the typical two- and three-repeat Myb genes. Gene. 2004;326:13–22.
pubmed: 14729259
doi: 10.1016/j.gene.2003.09.049
Sun W, Ma Z, Chen H, Liu M. MYB Gene Family in Potato (Solanum tuberosum L.): Genome-Wide Identification of Hormone-Responsive Reveals Their Potential Functions in Growth and Development. Int J Mol Sci. 2019;20(19):4847.
pubmed: 31569557
pmcid: 6801432
doi: 10.3390/ijms20194847
Cao Y, Li K, Li Y, Zhao X, Wang L. MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. Biology (Basel). 2020;9(3):61.
pubmed: 32213912
Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath PJ. Modulation of transcriptome and metabolome of tobacco by arabidopsis transcription factor, atmyb12, leads to insect resistance. Plant Physiol. 2010;152(4):2258–68.
pubmed: 20190095
pmcid: 2850017
doi: 10.1104/pp.109.150979
Pandey A, Misra P, Chandrashekar K, Trivedi PKJ. Development of atmyb12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep. 2012;31(10):1867–76.
pubmed: 22733206
doi: 10.1007/s00299-012-1300-6
Pandey A, Misra P, Khan MP, Swarnkar G, Tewari MC, Bhambhani S, Trivedi R, Chattopadhyay N, Trivedi PKJ. Co-expression of arabidopsis transcription factor, at myb 12, and soybean isoflavone synthase, gmifs 1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. Plant Biotechnol J. 2014;12(1):69–80.
pubmed: 24102754
doi: 10.1111/pbi.12118
Naik J, Misra P, Trivedi PK, Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. Plant Sci. 2022;317:111196.
pubmed: 35193745
doi: 10.1016/j.plantsci.2022.111196
Huang W, Khaldun A, Chen J, Zhang C, Lv H, Yuan L, Wang YJ. A R2R3-myb transcription factor regulates the flavonol biosynthetic pathway in a traditional chinese medicinal plant, epimedium sagittatum. Front Plant Sci. 2016;7:1089.
pubmed: 27493658
pmcid: 4954812
doi: 10.3389/fpls.2016.01089
Takos AM, Jaffffé FW, Jacob SR, Bogs J, Robinson SP, Walker ARJ. Light-induced expression of a myb gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 2006;142(3):1216–32.
pubmed: 17012405
pmcid: 1630764
doi: 10.1104/pp.106.088104
Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi TJ. Isolation and functional analysis of a myb transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 2007;48(7):958–70.
pubmed: 17526919
doi: 10.1093/pcp/pcm066
Vimolmangkang S, Han Y, Wei G, Korban SSJ. An apple myb transcription factor, mdmyb3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biol. 2013;13:176.
pubmed: 24199943
pmcid: 3833268
doi: 10.1186/1471-2229-13-176
Zhong R, Richardson EA, Ye Z-H. The myb46 transcription factor is a direct target of snd1 and regulates secondary wall biosynthesis in arabidopsis. Plant Cell. 2007;19(9):2776–92.
pubmed: 17890373
pmcid: 2048704
doi: 10.1105/tpc.107.053678
Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in arabidopsis. Plant Cell. 2008;20(10):2763–82.
pubmed: 18952777
pmcid: 2590737
doi: 10.1105/tpc.108.061325
Zhou J, Lee C, Zhong R, Ye Z-H. Myb58 and myb63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in arabidopsis. Plant Cell. 2009;21(1):248–66.
pubmed: 19122102
pmcid: 2648072
doi: 10.1105/tpc.108.063321
Chen P, Takatsuka H, Takahashi N, Kurata R, Fukao Y, Kobayashi K, Ito M, Umeda M. Arabidopsis R1R2R3-Myb proteins are essential for inhibiting cell division in response to DNA damage. Nat Commun. 2017;8(1):635.
pubmed: 28935922
pmcid: 5608833
doi: 10.1038/s41467-017-00676-4
Li J, Han G, Sun C, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav. 2019;14(8):1613131.
pubmed: 31084451
pmcid: 6619938
doi: 10.1080/15592324.2019.1613131
Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennisl ES. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. J Genet. 1998;149(2):479–90.
doi: 10.1093/genetics/149.2.479
Wyrzykowska A, Bielewicz D, Plewka P, Sołtys-Kalina D, Wasilewicz-Flis I, Marczewski W, Jarmolowski A, Szweykowska-Kulinska Z. The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway. Physiol Plant. 2022;174(5):e13775.
pubmed: 36050907
pmcid: 9828139
doi: 10.1111/ppl.13775
Yoo JH, Park CY, Kim JC, et al. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J Biol Chem. 2005;280(5):3697–706.
pubmed: 15569682
doi: 10.1074/jbc.M408237200
Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 2008;146(2):623–35.
pubmed: 18162593
pmcid: 2245844
doi: 10.1104/pp.107.110981
Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J. 2008;53(1):53–64.
pubmed: 17971045
doi: 10.1111/j.1365-313X.2007.03310.x
Seo P, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. J Plant Physiol. 2009;151(1):275–89.
doi: 10.1104/pp.109.144220
Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene OsMYB3R-2, increases tolerance to freezing, drought, salt stress in transgenic Arabidopsis. Plant Physiol. 2007;143(4):1739–51.
pubmed: 17293435
pmcid: 1851822
doi: 10.1104/pp.106.094532
Feng C, Andreasson E, Maslak A, Mock H, Mattsson O, Mundy J. Arabidopsis MYB68 in development and responses to nvironmental cues. Plant Sci. 2004;167(5):1099–107.
doi: 10.1016/j.plantsci.2004.06.014
Ashraf EK, Yong-Mei B, Kosala R, Beatty PH, Good AG, Rothstein SJ. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One. 2012;7(12):e52030.
doi: 10.1371/journal.pone.0052030
Liu S, Sun B, Cao B, Lv Y, Chen Z, Xu K. Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger (Zingiber officinale). Protoplasma. 2023;260(2):405–18.
pubmed: 35726036
doi: 10.1007/s00709-022-01783-w
Liu M, Lv Y, Cao B, Chen Z, Xu K. Physiological and molecular mechanism of ginger (Zingiber officinale Roscoe) seedling response to salt stress. Front Plant Sci. 2023;14:1073434.
pubmed: 37008470
pmcid: 10064006
doi: 10.3389/fpls.2023.1073434
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
pubmed: 29722887
pmcid: 5967553
doi: 10.1093/molbev/msy096
Price MN, Dehal PS, Arkin AP. FastTree 2–Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE. 2010;5(3):e9490.
pubmed: 20224823
pmcid: 2835736
doi: 10.1371/journal.pone.0009490
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
pubmed: 32585190
doi: 10.1016/j.molp.2020.06.009
Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics Bioinforma. 2006;4(4):259–63.
doi: 10.1016/S1672-0229(07)60007-2
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
doi: 10.1006/meth.2001.1262
Kang L, Teng Y, Cen Q, Fang Y, Tian Q, Zhang X, Wang H, Zhang X, Xue D. Genome-Wide Identification of R2R3-MYB Transcription Factor and Expression Analysis under Abiotic Stress in Rice. Plants (Basel). 2022;1(15):1928.
doi: 10.3390/plants11151928
Du H, Feng BR, Yang SS, Huang YB, Tang YX. The R2R3-MYB transcription factor gene family in maize. PLoS ONE. 2012;7(6):e37463.
pubmed: 22719841
pmcid: 3370817
doi: 10.1371/journal.pone.0037463
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81.
pubmed: 20674465
doi: 10.1016/j.tplants.2010.06.005
Baldoni E, Genga A, Cominelli E. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int J Mol Sci. 2015;16(7):15811–51.
pubmed: 26184177
pmcid: 4519927
doi: 10.3390/ijms160715811
Wang X, Niu Y, Zheng Y. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. Int J Mol Sci. 2021;22(11):6125.
pubmed: 34200125
pmcid: 8201141
doi: 10.3390/ijms22116125
Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol. 1999;41(5):577–85.
pubmed: 10645718
doi: 10.1023/A:1006319732410
Wang Y, Zhang Y, Fan C, Wei Y, Meng J, Li Z, Zhong C. Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia. BMC Plant Biol. 2021;21(1):328.
pubmed: 34238224
pmcid: 8265015
doi: 10.1186/s12870-021-03083-6
Wu J, Wang Z, Shi Z, Zhang S, et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23(2):396–408.
pubmed: 23149293
pmcid: 3561880
doi: 10.1101/gr.144311.112
Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics. 2012;13:544.
pubmed: 23050870
pmcid: 3542171
doi: 10.1186/1471-2164-13-544
Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants. FEBS J. 2010;262(2):247–57.
Chen Z, Wu Z, Dong W, Liu S, Tian L, Li J, Du H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Int J Mol Sci. 2022;23(16):9262.
pubmed: 36012533
pmcid: 9409031
doi: 10.3390/ijms23169262
Weston K. Myb proteins in life, death and differentiation. Curr Opin Genet Dev. 1998;8(1):76–81.
pubmed: 9529609
doi: 10.1016/S0959-437X(98)80065-8
Li C, Lu S. Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics. 2014;15:277.
pubmed: 24725266
pmcid: 4023596
doi: 10.1186/1471-2164-15-277
Xu Y, Iacuone S, Li SF, Parish RW. MYB80 homologues in Arabidopsis, cotton and Brassica: regulation and functional conservation in tapetal and pollen development. BMC Plant Biol. 2014;14:278.
pubmed: 25311582
pmcid: 4205283
doi: 10.1186/s12870-014-0278-3
Zhao C, Hanada A, Yamaguchi S, Kamiya Y, Beers EP. The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity. Plant J. 2011;66(3):502–15.
pubmed: 21255164
doi: 10.1111/j.1365-313X.2011.04508.x
Zhuang Y, Lian W, Tang X, Qi G, Wang D, Chai G, Zhou G. MYB42 inhibits hypocotyl cell elongation by coordinating brassinosteroid homeostasis and signalling in Arabidopsis thaliana. Ann Bot. 2022;129(4):403–13.
pubmed: 34922335
doi: 10.1093/aob/mcab152
Cui J, Jiang N, Zhou X, Hou X, Yang G, Meng J, Luan Y. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta. 2018;248(6):1487–503.
pubmed: 30132153
doi: 10.1007/s00425-018-2987-6
Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Overexpression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J. 2008;53(1):53–64.
pubmed: 17971045
doi: 10.1111/j.1365-313X.2007.03310.x
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014;77(3):367–79.
pubmed: 24274116
doi: 10.1111/tpj.12388
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. Sucrose-specifific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 2005;139(4):1840–52.
pubmed: 16299184
pmcid: 1310563
doi: 10.1104/pp.105.066688