The pan-PPAR agonist lanifibranor improves cardiometabolic health in patients with metabolic dysfunction-associated steatohepatitis.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
10 May 2024
Historique:
received: 12 10 2023
accepted: 16 04 2024
medline: 11 5 2024
pubmed: 11 5 2024
entrez: 10 5 2024
Statut: epublish

Résumé

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.

Identifiants

pubmed: 38730247
doi: 10.1038/s41467-024-47919-9
pii: 10.1038/s41467-024-47919-9
doi:

Substances chimiques

Chalcones 0
Peroxisome Proliferator-Activated Receptors 0
2-(2,6-dimethyl-4-(3-(4-(methylthio)phenyl)-3-oxo-1-propenyl)phenoxyl)-2-methylpropanoic acid 0
Blood Glucose 0
Triglycerides 0
Adiponectin 0
Propionates 0

Banques de données

ClinicalTrials.gov
['NCT03008070']

Types de publication

Journal Article Research Support, Non-U.S. Gov't Randomized Controlled Trial

Langues

eng

Sous-ensembles de citation

IM

Pagination

3962

Informations de copyright

© 2024. The Author(s).

Références

Godoy-Matos, A. F., Silva Junior, W. S. & Valerio, C. M. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 12, 60 (2020).
pubmed: 32684985 pmcid: 7359287 doi: 10.1186/s13098-020-00570-y
Francque, S. et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat. Rev. Gastroenterol. Hepatol. 18, 24–39 (2021).
pubmed: 33093663 doi: 10.1038/s41575-020-00366-5
Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023).
pubmed: 36626630 doi: 10.1097/HEP.0000000000000004
Lazarus, J. V. et al. Advancing the global public health agenda for NAFLD: a consensus statement. Nat. Rev. Gastroenterol. Hepatol. 19, 60–78 (2022).
pubmed: 34707258 doi: 10.1038/s41575-021-00523-4
Allen, A. M., Lazarus, J. V. & Younossi, Z. M. Healthcare and socioeconomic costs of NAFLD: a global framework to navigate the uncertainties. J. Hepatol. 79, 209–217 (2023).
pubmed: 36740046 doi: 10.1016/j.jhep.2023.01.026
Haas, J. T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).
pubmed: 26667070 doi: 10.1146/annurev-physiol-021115-105331
Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).
pubmed: 25955209 doi: 10.1016/j.cmet.2015.04.004
Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).
pubmed: 32044315 doi: 10.1053/j.gastro.2019.11.311
Antar, S. A., Ashour, N. A., Marawan, M. E. & Al-Karmalawy, A. A. Fibrosis: types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int. J. Mol. Sci. 24, 4004 (2023).
Angulo, P., Machado, M. V. & Diehl, A. M. Fibrosis in nonalcoholic Fatty liver disease: mechanisms and clinical implications. Semin Liver Dis. 35, 132–145 (2015).
pubmed: 25974899 doi: 10.1055/s-0035-1550065
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).
pubmed: 15915461 doi: 10.1002/hep.20701
Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).
pubmed: 25125077 doi: 10.1002/hep.27368
Hagstrom, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).
pubmed: 28803953 doi: 10.1016/j.jhep.2017.07.027
Taylor, R. S. et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterology 158, 1611–1625.e1612 (2020).
pubmed: 32027911 doi: 10.1053/j.gastro.2020.01.043
Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).
pubmed: 23507799 doi: 10.1038/nrgastro.2013.41
Mantovani, A. et al. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 111S, 154170 (2020).
pubmed: 32006558 doi: 10.1016/j.metabol.2020.154170
Targher, G., Byrne, C. D., Lonardo, A., Zoppini, G. & Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J. Hepatol. 65, 589–600 (2016).
pubmed: 27212244 doi: 10.1016/j.jhep.2016.05.013
Salah, H. M. et al. Meta-analysis of nonalcoholic fatty liver disease and incident heart failure. Am. J. Cardiol. 171, 180–181 (2022).
pubmed: 35305785 doi: 10.1016/j.amjcard.2022.02.012
Jin, R. et al. Amount of hepatic fat predicts cardiovascular risk independent of insulin resistance among Hispanic-American adolescents. Lipids Health Dis. 14, 39 (2015).
pubmed: 25925168 pmcid: 4426173 doi: 10.1186/s12944-015-0038-x
Kasper, P. et al. NAFLD and cardiovascular diseases: a clinical review. Clin. Res. Cardiol. 110, 921–937 (2021).
pubmed: 32696080 doi: 10.1007/s00392-020-01709-7
Baratta, F. et al. Nonalcoholic fatty liver disease and fibrosis associated with increased risk of cardiovascular events in a prospective study. Clin. Gastroenterol. Hepatol. 18, 2324–2331.e2324 (2020).
pubmed: 31887443 doi: 10.1016/j.cgh.2019.12.026
Malladi, N., Alam, M. J., Maulik, S. K. & Banerjee, S. K. The role of platelets in non-alcoholic fatty liver disease: from pathophysiology to therapeutics. Prostaglandins Other Lipid Mediat. 169, 106766 (2023).
pubmed: 37479133 doi: 10.1016/j.prostaglandins.2023.106766
Mann, J. P. et al. Hospital admission with non-alcoholic fatty liver disease is associated with increased all-cause mortality independent of cardiovascular risk factors. PLoS One 15, e0241357 (2020).
pubmed: 33108366 pmcid: 7591046 doi: 10.1371/journal.pone.0241357
Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).
pubmed: 28130788 doi: 10.1002/hep.29085
Chiriac, S. et al. Nonalcoholic fatty liver disease and cardiovascular diseases: the heart of the matter. Can. J. Gastroenterol. Hepatol. 2021, 6696857 (2021).
pubmed: 33505944 pmcid: 7815392 doi: 10.1155/2021/6696857
Golabi, P. et al. Causes of death in patients with Non-alcoholic Fatty Liver Disease (NAFLD), alcoholic liver disease and chronic viral Hepatitis B and C. Ann. Hepatol. 27, 100556 (2022).
pubmed: 34800721 doi: 10.1016/j.aohep.2021.100556
Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J. Hepatol. 69, 896–904 (2018).
pubmed: 29886156 doi: 10.1016/j.jhep.2018.05.036
Staels, B., Butruille, L. & Francque, S. Treating NASH by targeting peroxisome proliferator-activated receptors. J. Hepatol. 79, 1302–1316 (2023).
Wettstein, G. et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol. Commun. 1, 524–537 (2017).
pubmed: 29404476 pmcid: 5678909 doi: 10.1002/hep4.1057
Boubia, B. et al. Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) alpha/gamma/delta triple activators: discovery of lanifibranor, a new antifibrotic clinical candidate. J. Med. Chem. 61, 2246–2265 (2018).
pubmed: 29446942 doi: 10.1021/acs.jmedchem.7b01285
Francque, S. M. et al. A randomized, controlled trial of the Pan-PPAR Agonist Lanifibranor in NASH. N. Engl. J. Med. 385, 1547–1558 (2021).
pubmed: 34670042 doi: 10.1056/NEJMoa2036205
Marston, N. A. et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. Circulation 140, 1308–1317 (2019).
pubmed: 31530008 pmcid: 6791781 doi: 10.1161/CIRCULATIONAHA.119.041998
Kandelouei, T. et al. Effect of Statins on Serum level of hs-CRP and CRP in patients with cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials. Mediators Inflamm. 2022, 8732360 (2022).
pubmed: 35125965 pmcid: 8816584 doi: 10.1155/2022/8732360
Jimenez, R. V. & Szalai, A. J. Therapeutic lowering of C-Reactive Protein. Front. Immunol. 11, 619564 (2020).
pubmed: 33633738 doi: 10.3389/fimmu.2020.619564
Pearson, T. A. et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499–511 (2003).
pubmed: 12551878 doi: 10.1161/01.CIR.0000052939.59093.45
Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).
pubmed: 15635109 doi: 10.1056/NEJMoa042378
Liu, J. R., Liu, Y., Yin, F. Z. & Liu, B. W. Serum ferritin, an early marker of cardiovascular risk: a study in Chinese men of first-degree relatives with family history of type 2 diabetes. BMC Cardiovasc. Disord. 19, 82 (2019).
pubmed: 30943893 pmcid: 6448272 doi: 10.1186/s12872-019-1068-5
Fu, A. Z., Qiu, Y., Radican, L., Yin, D. D. & Mavros, P. Pre-existing cardiovascular diseases and glycemic control in patients with type 2 diabetes mellitus in Europe: a matched cohort study. Cardiovasc. Diabetol. 9, 15 (2010).
pubmed: 20409333 pmcid: 2876102 doi: 10.1186/1475-2840-9-15
Matheus, A. S. et al. Impact of diabetes on cardiovascular disease: an update. Int. J. Hypertens. 2013, 653789 (2013).
pubmed: 23533715 pmcid: 3603160 doi: 10.1155/2013/653789
Alexopoulos, A. S. et al. Glycemic control predicts severity of hepatocyte ballooning and hepatic fibrosis in nonalcoholic fatty liver disease. Hepatology 74, 1220–1233 (2021).
pubmed: 33724511 doi: 10.1002/hep.31806
Gujral, U. P. et al. Association between varying cut-points of intermediate hyperglycemia and risk of mortality, cardiovascular events and chronic kidney disease: a systematic review and meta-analysis. BMJ Open Diabetes Res. Care 9, e001776 (2021).
pubmed: 33906835 pmcid: 8088253 doi: 10.1136/bmjdrc-2020-001776
Neves, J. S. et al. Management of dyslipidemia and atherosclerotic cardiovascular risk in prediabetes. Diabetes Res. Clin. Pract. 190, 109980 (2022).
pubmed: 35787415 doi: 10.1016/j.diabres.2022.109980
Eddowes, P. J. et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1717–1730 (2019).
pubmed: 30689971 doi: 10.1053/j.gastro.2019.01.042
Gastaldelli, A. et al. PPAR-gamma-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH. Liver Int. 41, 2659–2670 (2021).
pubmed: 34219361 pmcid: 9290929 doi: 10.1111/liv.15005
Balas, B. et al. Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis. J. Hepatol. 47, 565–570 (2007).
pubmed: 17560678 doi: 10.1016/j.jhep.2007.04.013
Shadid, S. & Jensen, M. D. Effect of pioglitazone on biochemical indices of non-alcoholic fatty liver disease in upper body obesity. Clin. Gastroenterol. Hepatol. 1, 384–387 (2003).
pubmed: 15017657 doi: 10.1053/S1542-3565(03)00198-8
Basu, A. et al. Effects of pioglitazone versus glipizide on body fat distribution, body water content, and hemodynamics in type 2 diabetes. Diabetes Care 29, 510–514 (2006).
pubmed: 16505497 doi: 10.2337/diacare.29.03.06.dc05-2004
White, U., Fitch, M. D., Beyl, R. A., Hellerstein, M. K. & Ravussin, E. Adipose depot-specific effects of 16 weeks of pioglitazone on in vivo adipogenesis in women with obesity: a randomised controlled trial. Diabetologia 64, 159–167 (2021).
pubmed: 33001232 doi: 10.1007/s00125-020-05281-7
Rubenstrunk, A., Hanf, R., Hum, D. W., Fruchart, J. C. & Staels, B. Safety issues and prospects for future generations of PPAR modulators. Biochim. Biophys. Acta 1771, 1065–1081 (2007).
pubmed: 17428730 doi: 10.1016/j.bbalip.2007.02.003
Tsuchida, A. et al. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54, 3358–3370 (2005).
pubmed: 16306350 doi: 10.2337/diabetes.54.12.3358
Hsiao, G. et al. Multi-tissue, selective PPARgamma modulation of insulin sensitivity and metabolic pathways in obese rats. Am. J. Physiol. Endocrinol. Metab. 300, E164–E174 (2011).
pubmed: 20959535 doi: 10.1152/ajpendo.00219.2010
Rasouli, N., Kern, P. A., Elbein, S. C., Sharma, N. K. & Das, S. K. Improved insulin sensitivity after treatment with PPARgamma and PPARalpha ligands is mediated by genetically modulated transcripts. Pharmacogenet. Genom. 22, 484–497 (2012).
doi: 10.1097/FPC.0b013e328352a72e
Gastaldelli, A. & Cusi, K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 1, 312–328 (2019).
pubmed: 32039382 pmcid: 7001557 doi: 10.1016/j.jhepr.2019.07.002
Bajaj, M. et al. Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. J. Clin. Endocrinol. Metab. 89, 200–206 (2004).
pubmed: 14715850 doi: 10.1210/jc.2003-031315
Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).
pubmed: 17135584 doi: 10.1056/NEJMoa060326
Gastaldelli, A. et al. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50, 1087–1093 (2009).
pubmed: 19670459 doi: 10.1002/hep.23116
Gastaldelli, A. et al. Pioglitazone in the treatment of NASH: the role of adiponectin. Aliment Pharm. Ther. 32, 769–775 (2010).
doi: 10.1111/j.1365-2036.2010.04405.x
Simon, T. G. et al. The nonalcoholic fatty liver disease (NAFLD) fibrosis score, cardiovascular risk stratification and a strategy for secondary prevention with ezetimibe. Int. J. Cardiol. 270, 245–252 (2018).
pubmed: 29903515 pmcid: 6139264 doi: 10.1016/j.ijcard.2018.05.087
Sao, R. & Aronow, W. S. Association of non-alcoholic fatty liver disease with cardiovascular disease and subclinical atherosclerosis. Arch. Med. Sci. 14, 1233–1244 (2018).
pubmed: 30393477 doi: 10.5114/aoms.2017.68821
Shang, Y., Nasr, P., Widman, L. & Hagstrom, H. Risk of cardiovascular disease and loss in life expectancy in NAFLD. Hepatology 76, 1495–1505 (2022).
pubmed: 35403232 doi: 10.1002/hep.32519
Toh, J. Z. K. et al. A meta-analysis on the global prevalence, risk factors and screening of coronary heart disease in nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 20, 2462–2473.e2410 (2022).
pubmed: 34560278 doi: 10.1016/j.cgh.2021.09.021
Sinn, D. H. et al. Nonalcoholic fatty liver disease for identification of preclinical carotid atherosclerosis. Medicine 95, e2578 (2016).
pubmed: 26817915 pmcid: 4998289 doi: 10.1097/MD.0000000000002578
Targher, G., Byrne, C. D. & Tilg, H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 69, 1691–1705 (2020).
pubmed: 32321858 doi: 10.1136/gutjnl-2020-320622
Anstee, Q. M., Mantovani, A., Tilg, H. & Targher, G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 15, 425–439 (2018).
pubmed: 29713021 doi: 10.1038/s41575-018-0010-0
Targher, G., Corey, K. E., Byrne, C. D. & Roden, M. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 18, 599–612 (2021).
pubmed: 33972770 doi: 10.1038/s41575-021-00448-y
Stefan, N., Schick, F., Birkenfeld, A. L., Haring, H. U. & White, M. F. The role of hepatokines in NAFLD. Cell Metab. 35, 236–252 (2023).
pubmed: 36754018 pmcid: 10157895 doi: 10.1016/j.cmet.2023.01.006
Bedossa, P. & Consortium, F. P. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60, 565–575 (2014).
pubmed: 24753132 doi: 10.1002/hep.27173
American Diabetes, A. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 41, S13–S27 (2018).
doi: 10.2337/dc18-S002
Pfutzner, A. & Forst, T. High-sensitivity C-reactive protein as cardiovascular risk marker in patients with diabetes mellitus. Diabetes Technol. Ther. 8, 28–36 (2006).
pubmed: 16472048 doi: 10.1089/dia.2006.8.28
Zhao, S., Kusminski, C. M. & Scherer, P. E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 128, 136–149 (2021).
pubmed: 33411633 pmcid: 7799441 doi: 10.1161/CIRCRESAHA.120.314458

Auteurs

Michael P Cooreman (MP)

Research and Development, Inventiva, New York, NY, USA. Michael.Cooreman@inventivapharma.com.
Research and Development, Inventiva, Daix, France. Michael.Cooreman@inventivapharma.com.

Javed Butler (J)

Baylor Scott and White Research Institute, Dallas, TX, USA.

Robert P Giugliano (RP)

Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Faiez Zannad (F)

Centre d'Investigations Cliniques Plurithématique 1433, Université de Lorraine, Nancy, France.

Lucile Dzen (L)

Research and Development, Inventiva, New York, NY, USA.
Research and Development, Inventiva, Daix, France.

Philippe Huot-Marchand (P)

Research and Development, Inventiva, New York, NY, USA.
Research and Development, Inventiva, Daix, France.

Martine Baudin (M)

Research and Development, Inventiva, New York, NY, USA.
Research and Development, Inventiva, Daix, France.

Daniel R Beard (DR)

Translational Medicine Academy, Basel, Switzerland.

Jean-Louis Junien (JL)

Research and Development, Inventiva, New York, NY, USA.
Research and Development, Inventiva, Daix, France.

Pierre Broqua (P)

Research and Development, Inventiva, New York, NY, USA.
Research and Development, Inventiva, Daix, France.

Manal F Abdelmalek (MF)

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.

Sven M Francque (SM)

Department of Gastroenterology and Hepatology, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH