Functional analysis of the mating type genes in Verticillium dahliae.

Verticillium dahliae Asexual reproduction Mating type Pheromone Sexual reproduction Virulence

Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
07 May 2024
Historique:
received: 06 12 2023
accepted: 22 04 2024
medline: 8 5 2024
pubmed: 8 5 2024
entrez: 7 5 2024
Statut: epublish

Résumé

Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.

Sections du résumé

BACKGROUND BACKGROUND
Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood.
RESULTS RESULTS
In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence.
CONCLUSIONS CONCLUSIONS
These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.

Identifiants

pubmed: 38714997
doi: 10.1186/s12915-024-01900-6
pii: 10.1186/s12915-024-01900-6
doi:

Substances chimiques

Pheromones 0
Fungal Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

108

Subventions

Organisme : National Key Research and Development Program of China
ID : 2022YFE0130800
Organisme : National Key Research and Development Program of China
ID : 2022YFD1400300
Organisme : National Key Research and Development Program of China
ID : 2022YFE0111300
Organisme : Fundamental Research Funds for Central Non‑profit Scientific Institution in CAAS
ID : Y2021XK22
Organisme : National Natural Science Foundation of China
ID : 32370213
Organisme : National Natural Science Foundation of China
ID : 32270212

Informations de copyright

© 2024. The Author(s).

Références

Alby K, Schaefer D, Bennett RJ. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature. 2009;460(7257):890–3. https://doi.org/10.1038/nature08252 .
doi: 10.1038/nature08252 pubmed: 19675652 pmcid: 2866515
Almeida P, Barbosa R, Zalar P, Imanishi Y, Shimizu K, Turchetti B, et al. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol Ecol. 2015;24(21):5412–27. https://doi.org/10.1111/mec.13341 .
doi: 10.1111/mec.13341 pubmed: 26248006
Alvaro CG, Thorner J. Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. J Biol Chem. 2016;291(15):7788–95. https://doi.org/10.1074/jbc.R116.714980 .
doi: 10.1074/jbc.R116.714980 pubmed: 26907689 pmcid: 4824985
Baroudy F, Habib W, Tanos G, Gerges E, Saab C, Choueiri E, et al. Long-distance spread of Verticillium dahliae through rivers and irrigation systems. Plant Dis. 2018;102(8):1559–65. https://doi.org/10.1094/PDIS-08-17-1189-RE .
doi: 10.1094/PDIS-08-17-1189-RE pubmed: 30673424
Becker K, Beer C, Freitag M, Kück U. Genome-wide identification of target genes of a mating type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol. 2015;96(5):1002–22. https://doi.org/10.1111/mmi.12987 .
doi: 10.1111/mmi.12987 pubmed: 25728030
Bhat RG, Smith RF, Koike ST, Wu BM, Subbarao KV. Characterization of Verticillium dahliae isolates and wilt epidemics of pepper. Plant Dis. 2003;87(7):789–97. https://doi.org/10.1094/PDIS.2003.87.7.789 .
doi: 10.1094/PDIS.2003.87.7.789 pubmed: 30812888
Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ. The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol. 2002;45(3):795–804. https://doi.org/10.1046/j.1365-2958.2002.03052.x .
doi: 10.1046/j.1365-2958.2002.03052.x pubmed: 12139624
Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger D, et al. Sexual reproduction and mating type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A. 2013;110(4):1476–81. https://doi.org/10.1073/pnas.1217943110 .
doi: 10.1073/pnas.1217943110 pubmed: 23307807 pmcid: 3557024
Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, et al. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 2008;146(2):368–76. https://doi.org/10.1104/pp.107.111740 .
doi: 10.1104/pp.107.111740 pubmed: 18065554 pmcid: 2245818
Chen JY, Klosterman SJ, Hu XP, Dai XF, Subbarao KV. Key Insights and research prospects at the dawn of the population genomics era for Verticillium dahliae. Annu Rev Phytopathol. 2021;59:31–51. https://doi.org/10.1146/annurev-phyto-020620-121925 .
doi: 10.1146/annurev-phyto-020620-121925 pubmed: 33891830
Chen JY, Liu C, Gui YJ, Gui YJ, Si KW, Zhang DD, Wang J, et al. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. New Phytol. 2018;217(2):756–70. https://doi.org/10.1111/nph.14861 .
doi: 10.1111/nph.14861 pubmed: 29084346
Clark-Cotton MR, Jacobs KC, Lew DJ. Chemotropism and cell-cell fusion in fungi. Microbiol Mol Biol Rev. 2022;86(1):e0016521. https://doi.org/10.1128/mmbr.00165-21 .
doi: 10.1128/mmbr.00165-21 pubmed: 35138122
Collado-Romero M, Mercado-Blanco J, Olivares-García C, Jiménez-Díaz RM. Phylogenetic analysis of Verticillium dahliae vegetative compatibility groups. Phytopathology. 2008;98(9):1019–28. https://doi.org/10.1094/PHYTO-98-9-1019 .
doi: 10.1094/PHYTO-98-9-1019 pubmed: 18943740
Collado-Romero M, Mercado-Blanco J, Olivares-García C, Valverde-Corredor A, Jiménez-Díaz RM. Molecular variability within and among Verticillium dahliae vegetative compatibility groups determined by fluorescent amplified fragment length polymorphism and polymerase chain reaction markers. Phytopathology. 2006;96(5):485–95. https://doi.org/10.1094/PHYTO-96-0485 .
doi: 10.1094/PHYTO-96-0485 pubmed: 18944308
de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA, Thomma BP. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 2013;23(8):1271–82. https://doi.org/10.1101/gr.152660.112 .
doi: 10.1101/gr.152660.112 pubmed: 23685541 pmcid: 3730101
Dohlman HG. G proteins and pheromone signaling. Annu Rev Physiol. 2002;64:129–52. https://doi.org/10.1146/annurev.physiol.64.081701.133448 .
doi: 10.1146/annurev.physiol.64.081701.133448 pubmed: 11826266
Doughan B, Rollins JA. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol. 2016;120(9):1105–17. https://doi.org/10.1016/j.funbio.2016.06.007 .
doi: 10.1016/j.funbio.2016.06.007 pubmed: 27567717
Dung JK, Peever TL, Johnson DA. Verticillium dahliae populations from mint and potato are genetically divergent with predominant haplotypes. Phytopathology. 2013;103(5):445–59. https://doi.org/10.1094/PHYTO-06-12-0133-R .
doi: 10.1094/PHYTO-06-12-0133-R pubmed: 23113547
Dyer PS, Kück U. Sex and the imperfect fungi. Microbiol Spectr. 2017;5(3). https://doi.org/10.1128/microbiolspec.FUNK-0043-2017 .
Fradin EF, Thomma BP. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol. 2006;7(2):71–86. https://doi.org/10.1111/j.1364-3703.2006.00323.x .
doi: 10.1111/j.1364-3703.2006.00323.x pubmed: 20507429
Goddard MR, Godfray HC, Burt A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature. 2005;434(7033):636–40. https://doi.org/10.1038/nature03405 .
doi: 10.1038/nature03405 pubmed: 15800622
Gorelick R, Carpinone J. Origin and maintenance of sex: the evolutionary joys of self sex. Biol J Linn Soc. 2009;98:707–28. https://doi.org/10.1111/j.1095-8312.2009.01334.x .
doi: 10.1111/j.1095-8312.2009.01334.x
Gui YJ, Chen JY, Zhang DD, Li NY, Li TG, Zhang WQ, et al. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ Microbiol. 2017;19(5):1914–32. https://doi.org/10.1111/1462-2920.13695 .
doi: 10.1111/1462-2920.13695 pubmed: 28205292
Heitman J. Sexual reproduction and the evolution of microbial pathogens. Curr Biol. 2006;16(17):R711–25. https://doi.org/10.1016/j.cub.2006.07.064 .
doi: 10.1016/j.cub.2006.07.064 pubmed: 16950098
Heitman J. Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe. 2010;8(1):86–99. https://doi.org/10.1016/j.chom.2010.06.011 .
doi: 10.1016/j.chom.2010.06.011 pubmed: 20638645 pmcid: 2916653
Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods. 2005;1:13. https://doi.org/10.1186/1746-4811-1-13 .
doi: 10.1186/1746-4811-1-13 pubmed: 16359558 pmcid: 1334188
Inderbitzin P, Davis RM, Bostock RM, Subbarao KV. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One. 2011;6(3):e18260. https://doi.org/10.1371/journal.pone.0018260 .
doi: 10.1371/journal.pone.0018260 pubmed: 21455321 pmcid: 3063834
Jacobs KA, Collins-Racie LA, Colbert M, Duckett M, Golden-Fleet M, Kelleher K, et al. A genetic selection for isolating cDNAs encoding secreted proteins. Gene. 1997;198(1–2):289–96. https://doi.org/10.1016/s0378-1119(97)00330-2 .
doi: 10.1016/s0378-1119(97)00330-2 pubmed: 9370294
Jiménez-GascoMdel M, Malcolm GM, Berbegal M, Armengol J, Jiménez-Díaz RM. Complex molecular relationship between vegetative compatibility groups (VCGs) in Verticillium dahliae: VCGs do not always align with clonal lineages. Phytopathology. 2014;104(6):650–9. https://doi.org/10.1094/PHYTO-07-13-0180-R .
doi: 10.1094/PHYTO-07-13-0180-R
Kim H, Borkovich KA. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol. 2004;52(6):1781–98. https://doi.org/10.1111/j.1365-2958.2004.04096.x .
doi: 10.1111/j.1365-2958.2004.04096.x pubmed: 15186425
Kim H, Borkovich KA. Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot Cell. 2006;5(3):544–54. https://doi.org/10.1128/EC.5.3.544-554.2006 .
doi: 10.1128/EC.5.3.544-554.2006 pubmed: 16524909 pmcid: 1398069
Kim HK, Jo SM, Kim GY, Kim DW, Kim YK, Yun SH. A Large-Scale Functional analysis of putative target genes of mating type loci provides insight into the regulation of sexual development of the cereal pathogen Fusarium graminearum. PLoS Genet. 2015;11(9):e1005486. https://doi.org/10.1371/journal.pgen.1005486 . Published 2015 Sep 3.
doi: 10.1371/journal.pgen.1005486 pubmed: 26334536 pmcid: 4559316
Klix V, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Pöggeler S. Functional characterization of MAT1-1-specific mating type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. Eukaryot Cell. 2010;9(6):894–905. https://doi.org/10.1128/EC.00019-10 .
doi: 10.1128/EC.00019-10 pubmed: 20435701 pmcid: 2901639
Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. Diversity, pathogenicity, and management of verticillium species. Annu Rev Phytopathol. 2009;47:39–62. https://doi.org/10.1146/annurev-phyto-080508-081748 .
doi: 10.1146/annurev-phyto-080508-081748 pubmed: 19385730
Kück U, Pöggeler S. Cryptic sex in fungi. Fungal Biol Rev. 2009;23:86–90. https://doi.org/10.1016/j.fbr.2009.10.004 .
doi: 10.1016/j.fbr.2009.10.004
Kück U, Böhm J. mating type genes and cryptic sexuality as tools for genetically manipulating industrial molds. Appl Microbiol Biotechnol. 2013;97(22):9609–20. https://doi.org/10.1007/s00253-013-5268-0 .
doi: 10.1007/s00253-013-5268-0 pubmed: 24085397
Lee J, Leslie JF, Bowden RL. Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryot Cell. 2008;7(7):1211–21. https://doi.org/10.1128/EC.00272-07 .
doi: 10.1128/EC.00272-07 pubmed: 18503004 pmcid: 2446672
Lee SC, Ni M, Li W, Shertz C, Heitman J. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev. 2010;74(2):298–340. https://doi.org/10.1128/MMBR.00005-10 .
doi: 10.1128/MMBR.00005-10 pubmed: 20508251 pmcid: 2884414
Lin X, Hull CM, Heitman J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature. 2005;434(7036):1017–21. https://doi.org/10.1038/nature03448 .
doi: 10.1038/nature03448 pubmed: 15846346
Liu SY, Chen JY, Wang JL, et al. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene. 2013;529(2):307–16. https://doi.org/10.1016/j.gene.2013.06.089 .
doi: 10.1016/j.gene.2013.06.089 pubmed: 23891822
Lobuglio KF, Taylor JW. Recombination and genetic differentiation in the mycorrhizal fungus Cenococcum geophilum Fr. Mycologia. 2002;94(5):772–80. https://doi.org/10.1080/15572536.2003.11833171 .
doi: 10.1080/15572536.2003.11833171 pubmed: 21156551
Mayrhofer S, Weber JM, Pöggeler S. Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics. 2006;172(3):1521–33. https://doi.org/10.1534/genetics.105.047381 .
doi: 10.1534/genetics.105.047381 pubmed: 16387884 pmcid: 1456310
McDonald MJ, Rice DP, Desai MM. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature. 2016;531(7593):233–6. https://doi.org/10.1038/nature17143 .
doi: 10.1038/nature17143 pubmed: 26909573 pmcid: 4855304
Milgroom MG, Jiménez-GascoMdel M, Olivares García C, Drott MT, Jiménez-Díaz RM. Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing. PLoS One. 2014;9(9):e106740. https://doi.org/10.1371/journal.pone.0106740 .
doi: 10.1371/journal.pone.0106740 pubmed: 25181515 pmcid: 4152335
Ni M, Feretzaki M, Sun S, Wang X, Heitman J. Sex in fungi. Annu Rev Genet. 2011;45:405–30. https://doi.org/10.1146/annurev-genet-110410-132536 .
doi: 10.1146/annurev-genet-110410-132536 pubmed: 21942368 pmcid: 3310392
Noor MA, Grams KL, Bertucci LA, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A. 2001;98(21):12084–8. https://doi.org/10.1073/pnas.221274498 .
doi: 10.1073/pnas.221274498 pubmed: 11593019 pmcid: 59771
Ojeda-López M, Chen W, Eagle CE, et al. Evolution of asexual and sexual reproduction in the aspergilli. Stud Mycol. 2018;91:37–59. https://doi.org/10.1016/j.simyco.2018.10.002 .
doi: 10.1016/j.simyco.2018.10.002 pubmed: 30425416 pmcid: 6231087
Otto SP. The evolutionary enigma of sex. Am Nat. 2009;174(Suppl 1):S1–14. https://doi.org/10.1086/599084 .
doi: 10.1086/599084 pubmed: 19441962
Santhanam P, van Esse HP, Albert I, Faino L, Nürnberger T, Thomma BP. Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant Microbe Interact. 2013;26(3):278–86. https://doi.org/10.1094/MPMI-09-12-0222-R .
doi: 10.1094/MPMI-09-12-0222-R pubmed: 23051172
Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev. 2000;64(3):489–502. https://doi.org/10.1128/MMBR.64.3.489-502.2000 .
doi: 10.1128/MMBR.64.3.489-502.2000 pubmed: 10974123 pmcid: 99001
Schmoll M, Seibel C, Tisch D, Dorrer M, Kubicek CP. A novel class of peptide pheromone precursors in ascomycetous fungi. Mol Microbiol. 2010;77(6):1483–501. https://doi.org/10.1111/j.1365-2958.2010.07295.x .
doi: 10.1111/j.1365-2958.2010.07295.x pubmed: 20735770 pmcid: 3068285
Seidl MF, Thomma BP. Sex or no sex: evolutionary adaptation occurs regardless. BioEssays. 2014;36(4):335–45. https://doi.org/10.1002/bies.201300155 .
doi: 10.1002/bies.201300155 pubmed: 24531982 pmcid: 4158867
Short DP, Gurung S, Gladieux P, et al. Globally invading populations of the fungal plant pathogen Verticillium dahliae are dominated by multiple divergent lineages. Environ Microbiol. 2015;17(8):2824–40. https://doi.org/10.1111/1462-2920.12789 .
doi: 10.1111/1462-2920.12789 pubmed: 25630463
Short DP, Gurung S, Hu X, Inderbitzin P, Subbarao KV. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae. PLoS One. 2014;9(11):e112145. https://doi.org/10.1371/journal.pone.0112145 .
doi: 10.1371/journal.pone.0112145 pubmed: 25383550 pmcid: 4226480
Sieber B, Coronas-Serna JM, Martin SG. A focus on yeast mating: from pheromone signaling to cell-cell fusion. Semin Cell Dev Biol. 2023;133:83–95. https://doi.org/10.1016/j.semcdb.2022.02.003 .
doi: 10.1016/j.semcdb.2022.02.003 pubmed: 35148940
Taylor J, Jacobson D, Fisher M. The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol. 1999;37:197–246. https://doi.org/10.1146/annurev.phyto.37.1.197 .
doi: 10.1146/annurev.phyto.37.1.197 pubmed: 11701822
Turgeon BG, Yoder OC. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol. 2000;31(1):1–5. https://doi.org/10.1006/fgbi.2000.1227 .
doi: 10.1006/fgbi.2000.1227 pubmed: 11118130
Usami T, Itoh M, Amemiya Y. Asexual fungus Verticillium dahliae is potentially heterothallic. J Gen Plant Pathol. 2009;75:422–7. https://doi.org/10.1007/s10327-009-0197-6 .
doi: 10.1007/s10327-009-0197-6
Usami T, Itoh M, Amemiya Y. Mating type gene mat1-2-1 is common among japanese isolates of Verticillium dahliae. Physiol Mol Plant P. 2008;73(6):133–7. https://doi.org/10.1016/j.pmpp.2009.04.002 .
doi: 10.1016/j.pmpp.2009.04.002
Vitale S, Di Pietro A, Turrà D. Autocrine pheromone signalling regulates community behaviour in the fungal pathogen Fusarium oxysporum. Nat Microbiol. 2019;4(9):1443–9. https://doi.org/10.1038/s41564-019-0456-z .
doi: 10.1038/s41564-019-0456-z pubmed: 31133754
Wang JY, Wang SZ, Zhang Z, Hao ZN, Shi XX, Li L, et al. MAT loci play crucial roles in sexual development but are dispensable for asexual reproduction and pathogenicity in rice blast fungus Magnaporthe oryzae. J Fungi (Basel). 2021;7(10):858. https://doi.org/10.3390/jof7100858 .
doi: 10.3390/jof7100858 pubmed: 34682279
Wang Q, Wang S, Xiong CL, James TY, Zhang XG. mating type genes of the anamorphic fungus Ulocladium botrytis affect both asexual sporulation and sexual reproduction. Sci Rep. 2017;7(1):7932. https://doi.org/10.1038/s41598-017-08471-3 .
doi: 10.1038/s41598-017-08471-3 pubmed: 28801599 pmcid: 5554195
Wang Y, Dohlman HG. Pheromone signaling mechanisms in yeast: a prototypical sex machine. Science. 2004;306(5701):1508–9. https://doi.org/10.1126/science.1104568 .
doi: 10.1126/science.1104568 pubmed: 15567849
Xu W, Liang G, Peng J, Long Z, Li D, Fu M, et al. The influence of the mating type on virulence of Mucor irregularis. Sci Rep. 2017;7(1):10629. https://doi.org/10.1038/s41598-017-10954-2 .
doi: 10.1038/s41598-017-10954-2 pubmed: 28878325 pmcid: 5587739
Yong M, Yu J, Pan X, et al. Two mating type genes MAT1-1-1 and MAT1-1-2 with significant functions in conidiation, stress response, sexual development, and pathogenicity of rice false smut fungus Villosiclava virens. Curr Genet. 2020;66(5):989–1002. https://doi.org/10.1007/s00294-020-01085-9 .
doi: 10.1007/s00294-020-01085-9 pubmed: 32572596
Zhang DD, Wang J, Wang D, et al. Population genomics demystifies the defoliation phenotype in the plant pathogen Verticillium dahliae. New Phytol. 2019;222(2):1012–29. https://doi.org/10.1111/nph.15672 .
doi: 10.1111/nph.15672 pubmed: 30609067 pmcid: 6594092
Zheng Q, Hou R, Juanyu, et al. The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum. PLoS One. 2015;10(7):e0131623. https://doi.org/10.1371/journal.pone.0066980 .
Zhou L, Zhao J, Guo W, Zhang T. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae. J Genet Genomics. 2013;40(8):421–31. https://doi.org/10.1016/j.jgg.2013.04.006 .
doi: 10.1016/j.jgg.2013.04.006 pubmed: 23969251

Auteurs

Ya-Duo Zhang (YD)

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Xiao-Bin Ji (XB)

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Juan Zong (J)

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Xiao-Feng Dai (XF)

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Steven J Klosterman (SJ)

United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA.

Krishna V Subbarao (KV)

Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA, USA. kvsubbarao@ucdavis.edu.

Dan-Dan Zhang (DD)

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. zhangdandan@caas.cn.
Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China. zhangdandan@caas.cn.

Jie-Yin Chen (JY)

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. chenjieyin@caas.cn.
Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China. chenjieyin@caas.cn.

Articles similaires

Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol

Mutational analysis of Phanerochaete chrysosporium´s purine transporter.

Mariana Barraco-Vega, Manuel Sanguinetti, Gabriela da Rosa et al.
1.00
Phanerochaete Fungal Proteins Purines Aspergillus nidulans DNA Mutational Analysis
Ascomycota Cenchrus Chromosomes, Fungal Genome, Fungal Plant Diseases

Classifications MeSH