Colostrum as a source of ESBL-Escherichia coli in feces of newborn calves.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 04 2024
Historique:
received: 30 11 2023
accepted: 23 04 2024
medline: 1 5 2024
pubmed: 1 5 2024
entrez: 30 4 2024
Statut: epublish

Résumé

The aim of the present study was to determine if colostrum and the equipment for harvesting and feeding colostrum are sources of fecal ESBL/AmpC-producing Escherichia coli (ESBL/AmpC-E. coli) in calves. Therefore, 15 male calves fed with pooled colostrum on a dairy farm and held individually in an experimental barn, the colostrum pool and the equipment for harvesting and feeding colostrum were sampled and analyzed for the occurrence of ESBL/AmpC-E. coli. The ESBL-AmpC-E. coli suspicious isolates were subjected to whole-genome sequence analysis. Forty-three of 45 fecal samples were tested positive for ESBL/AmpC-E. coli. In the colostrum sample and in the milking pot, we also found ESBL/AmpC-E. coli. All 45 E. coli isolates were ESBL-producers, mainly commensal sequence type (ST) 10, but also human-extraintestinal pathogenic E. coli ST131 and ST117 were found. The clonal identity of six fecal isolates with the ESBL-E. coli isolate from the colostrum and of five fecal isolates with the strain from the milking pot demonstrates that the hygiene of colostrum or the colostrum equipment can play a significant role in the spread of ESBL-E. coli. Effective sanitation procedures for colostrum harvesting and feeding equipment are crucial to reduce the ESBL-E. coli shedding of neonatal dairy calves.

Identifiants

pubmed: 38688984
doi: 10.1038/s41598-024-60461-4
pii: 10.1038/s41598-024-60461-4
doi:

Substances chimiques

beta-Lactamases EC 3.5.2.6
Bacterial Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9929

Subventions

Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : 01KI2015

Informations de copyright

© 2024. The Author(s).

Références

Tacconelli, E. et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2017).
doi: 10.1016/S1473-3099(17)30753-3 pubmed: 29276051
GBDAR Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248. https://doi.org/10.1016/S0140-6736(22)02185-7 (2022).
doi: 10.1016/S0140-6736(22)02185-7
Grover, N., Sahni, A. K. & Bhattacharya, S. Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Med. J. Armed Forces India 69, 4–10. https://doi.org/10.1016/j.mjafi.2012.02.001 (2013).
doi: 10.1016/j.mjafi.2012.02.001 pubmed: 24532926
Dahms, C. et al. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLoS One https://doi.org/10.1371/journal.pone.0143326 (2015).
doi: 10.1371/journal.pone.0143326 pubmed: 26606146 pmcid: 4659621
Eger, E. et al. Highly virulent and multidrug-resistant Escherichia coli sequence type 58 from a sausage in Germany. Antibiotics (Basel) https://doi.org/10.3390/antibiotics11081006 (2022).
doi: 10.3390/antibiotics11081006 pubmed: 36290018
Odenthal, S., Akineden, O. & Usleber, E. Extended-spectrum beta-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms. Int. J. Food Microbiol. 238, 72–78. https://doi.org/10.1016/j.ijfoodmicro.2016.08.036 (2016).
doi: 10.1016/j.ijfoodmicro.2016.08.036 pubmed: 27592073
Marshall, B., Petrowski, D. & Levy, S. B. Inter- and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proc. Natl. Acad. Sci. USA 87, 6609–6613. https://doi.org/10.1073/pnas.87.17.6609 (1990).
doi: 10.1073/pnas.87.17.6609 pubmed: 2204058 pmcid: 54586
Homeier-Bachmann, T. et al. Antibiotic-resistant Enterobacteriaceae in wastewater of Abattoirs. Antibiotics (Basel) https://doi.org/10.3390/antibiotics10050568 (2021).
doi: 10.3390/antibiotics10050568 pubmed: 34065908
Schaumburg, F. et al. The risk to import ESBL-producing Enterobacteriaceae and Staphylococcus aureus through chicken meat trade in Gabon. BMC Microbiol. 14, 286. https://doi.org/10.1186/s12866-014-0286-3 (2014).
doi: 10.1186/s12866-014-0286-3 pubmed: 25406798 pmcid: 4239323
Homeier-Bachmann, T., Kleist, J. F., Schutz, A. K. & Bachmann, L. Distribution of ESBL/AmpC-Escherichia coli on a dairy farm. Antibiotics (Basel) https://doi.org/10.3390/antibiotics11070940 (2022).
doi: 10.3390/antibiotics11070940 pubmed: 36290018
Weber, L. P. et al. Prevalence and risk factors for ESBL/AmpC-E. coli in pre-weaned dairy calves on dairy farms in Germany. Microorganisms 9, 2135 (2021).
doi: 10.3390/microorganisms9102135 pubmed: 34683456 pmcid: 8539614
Springer, H. R. et al. Antimicrobial resistance in fecal Escherichia coli and Salmonella enterica from dairy calves: A systematic review. Foodborne Pathog. Dis. 16, 23–34. https://doi.org/10.1089/fpd.2018.2529 (2019).
doi: 10.1089/fpd.2018.2529 pubmed: 30481058
Liu, J. et al. The fecal resistome of dairy cattle is associated with diet during nursing. Nat. Commun. 10, 4406. https://doi.org/10.1038/s41467-019-12111-x (2019).
doi: 10.1038/s41467-019-12111-x pubmed: 31562300 pmcid: 6765000
Duse, A. et al. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 98, 500–516. https://doi.org/10.3168/jds.2014-8432 (2015).
doi: 10.3168/jds.2014-8432 pubmed: 25465547
Gonggrijp, M. A. et al. Prevalence and risk factors for extended-spectrum beta-lactamase- and AmpC-producing Escherichia coli in dairy farms. J. Dairy Sci. 99, 9001–9013. https://doi.org/10.3168/jds.2016-11134 (2016).
doi: 10.3168/jds.2016-11134 pubmed: 27638264
Hordijk, J. et al. Dynamics of faecal shedding of ESBL- or AmpC-producing Escherichia coli on dairy farms. J. Antimicrob. Chemother. 74, 1531–1538. https://doi.org/10.1093/jac/dkz035 (2019).
doi: 10.1093/jac/dkz035 pubmed: 30753489 pmcid: 6524482
Schmid, A. et al. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl. Environ. Microbiol. 79, 3027–3032. https://doi.org/10.1128/aem.00204-13 (2013).
doi: 10.1128/aem.00204-13 pubmed: 23455336 pmcid: 3623142
Brunton, L. A., Reeves, H. E., Snow, L. C. & Jones, J. R. A longitudinal field trial assesing the impact of feeding waste milk containing antibiotic residues on the prevalence of ESBL-producing Escherichia coli in calves. Prev. Vet. Med. 117, 403–412. https://doi.org/10.1016/j.prevetmed.2014.08.005 (2014).
doi: 10.1016/j.prevetmed.2014.08.005 pubmed: 25172121
Tetens, J. L., Billerbeck, S., Schwenker, J. A. & Holzel, C. S. Short communication: Selection of extended-spectrum beta-lactamase-producing Escherichia coli in dairy calves associated with antibiotic dry cow therapy—A cohort study. J. Dairy Sci. 102, 11449–11452. https://doi.org/10.3168/jds.2019-16659 (2019).
doi: 10.3168/jds.2019-16659 pubmed: 31629516
Heinemann, C., Leubner, C. D., Hayer, J. J. & Steinhoff-Wagner, J. Hygiene management in newborn individually housed dairy calves focusing on housing and feeding practices. J. Anim. Sci. https://doi.org/10.1093/jas/skaa391 (2021).
doi: 10.1093/jas/skaa391 pubmed: 34549291 pmcid: 8525503
He, Z., Yang, S., Ma, Y., Zhang, S. & Cao, Z. Detection of CTX-M-15 extended-spectrum beta-lactamases producing Escherichia coli isolates from colostrum and faeces of newborn dairy calves in China. Pathogens https://doi.org/10.3390/pathogens10091162 (2021).
doi: 10.3390/pathogens10091162 pubmed: 34959587 pmcid: 8707848
Mills, J. P. et al. Clinical and molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli infections in metro Detroit: Early dominance of the ST-131 clone. Infect. Dis. Ther. 9, 683–690. https://doi.org/10.1007/s40121-020-00321-6 (2020).
doi: 10.1007/s40121-020-00321-6 pubmed: 32683600 pmcid: 7452991
Godden, S. M., Lombard, J. E. & Woolums, A. R. Colostrum management for dairy calves. Vet. Clin. North Am. Food Anim. Pract. 35, 535–556. https://doi.org/10.1016/j.cvfa.2019.07.005 (2019).
doi: 10.1016/j.cvfa.2019.07.005 pubmed: 31590901 pmcid: 7125574
Ludden, C. et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: A genomic surveillance study. Lancet Microbe 2, e472–e480. https://doi.org/10.1016/S2666-5247(21)00117-8 (2021).
doi: 10.1016/S2666-5247(21)00117-8 pubmed: 34485958 pmcid: 8410606
Armengol, R. & Fraile, L. Colostrum and milk pasteurization improve health status and decrease mortality in neonatal calves receiving appropriate colostrum ingestion. J. Dairy Sci. 99, 4718–4725. https://doi.org/10.3168/jds.2015-10728 (2016).
doi: 10.3168/jds.2015-10728 pubmed: 26995131
Smith, B. I., Cady, S. V. & Aceto, H. W. Effect of formic acid treatment on colostrum quality, and on absorption and function of immunoglobulins: A randomized controlled trial in Holstein dairy calves. BMC Vet. Res. 18, 318. https://doi.org/10.1186/s12917-022-03418-x (2022).
doi: 10.1186/s12917-022-03418-x pubmed: 35978339 pmcid: 9387083
Platell, J. L., Johnson, J. R., Cobbold, R. N. & Trott, D. J. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet. Microbiol. 153, 99–108. https://doi.org/10.1016/j.vetmic.2011.05.007 (2011).
doi: 10.1016/j.vetmic.2011.05.007 pubmed: 21658865
Riley, L. W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 20, 380–390. https://doi.org/10.1111/1469-0691.12646 (2014).
doi: 10.1111/1469-0691.12646 pubmed: 24766445
Dahmen, S., Métayer, V., Gay, E., Madec, J. Y. & Haenni, M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet. Microbiol. 162, 793–799. https://doi.org/10.1016/j.vetmic.2012.10.015 (2013).
doi: 10.1016/j.vetmic.2012.10.015 pubmed: 23127568
Irrgang, A. et al. Diversity of CTX-M-1-producing E. coli from German food samples and genetic diversity of the bla(CTX-M-1) region on IncI1 ST3 plasmids. Vet. Microbiol. 221, 98–104. https://doi.org/10.1016/j.vetmic.2018.06.003 (2018).
doi: 10.1016/j.vetmic.2018.06.003 pubmed: 29981716
Gerhold, G., Schulze, M. H., Gross, U. & Bohne, W. Multilocus sequence typing and CTX-M characterization of ESBL-producing E. coli: A prospective single-centre study in Lower Saxony, Germany. Epidemiol. Infect. 144, 3300–3304. https://doi.org/10.1017/s0950268816001412 (2016).
doi: 10.1017/s0950268816001412 pubmed: 27357252
Chen, J. W. et al. Antibiotic-resistant Escherichia coli and sequence type 131 in fecal colonization in dogs in Taiwan. Microorganisms https://doi.org/10.3390/microorganisms8091439 (2020).
doi: 10.3390/microorganisms8091439 pubmed: 33266460 pmcid: 7760966
Gregova, G. & Kmet, V. Antibiotic resistance and virulence of Escherichia coli strains isolated from animal rendering plant. Sci. Rep. 10, 17108. https://doi.org/10.1038/s41598-020-72851-5 (2020).
doi: 10.1038/s41598-020-72851-5 pubmed: 33051473 pmcid: 7553926
Friese, A. et al. Faecal occurrence and emissions of livestock-associated methicillin-resistant Staphylococcus aureus (laMRSA) and ESBL/AmpC-producing E. coli from animal farms in Germany. Berl. Munch. Tierarztl. Wochenschr. 126, 175–180 (2013).
pubmed: 23540202
Zhuge, X. et al. Chicken-source Escherichia coli within phylogroup F shares virulence genotypes and is closely related to extraintestinal pathogenic E. coli causing human infections. Transbound. Emerg. Dis. 68, 880–895. https://doi.org/10.1111/tbed.13755 (2021).
doi: 10.1111/tbed.13755 pubmed: 32722875
Kim, S. W., Karns, J. S., Van Kessel, J. A. S. & Haley, B. J. Genome sequences of five multidrug-resistant Escherichia coli sequence type 117 isolates recovered from dairy calves. Genome Announc. https://doi.org/10.1128/genomeA.00732-17 (2017).
doi: 10.1128/genomeA.00732-17 pubmed: 29192082 pmcid: 5722068
Dengler, F. et al. Cryptosporidium parvum competes with the intestinal epithelial cells for glucose and impairs systemic glucose supply in neonatal calves. Vet. Res. 54, 40. https://doi.org/10.1186/s13567-023-01172-y (2023).
doi: 10.1186/s13567-023-01172-y pubmed: 37138353 pmcid: 10156424
Homeier-Bachmann, T. et al. Antibiotic-resistant Enterobacteriaceae in wastewater of abattoirs. Antibiotics 10, 568. https://doi.org/10.3390/antibiotics10050568 (2021).
doi: 10.3390/antibiotics10050568 pubmed: 34065908 pmcid: 8150771
Homeier-Bachmann, T. et al. Genomic analysis of ESBL-producing E. coli in wildlife from North-Eastern Germany. Antibiotics 11, 123 (2022).
doi: 10.3390/antibiotics11020123 pubmed: 35203726 pmcid: 8868512
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).
doi: 10.1089/cmb.2012.0021 pubmed: 22506599 pmcid: 3342519
Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; peer review: 2 approved]. Wellcome Open Res. https://doi.org/10.12688/wellcomeopenres.14826.1 (2018).
doi: 10.12688/wellcomeopenres.14826.1 pubmed: 30687793 pmcid: 6192448
Liu, B., Zheng, D. D., Jin, Q., Chen, L. H. & Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692. https://doi.org/10.1093/nar/gky1080 (2019).
doi: 10.1093/nar/gky1080 pubmed: 30395255
Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644. https://doi.org/10.1093/jac/dks261 (2012).
doi: 10.1093/jac/dks261 pubmed: 22782487 pmcid: 3468078
Carattoli, A. et al. In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903. https://doi.org/10.1128/Aac.02412-14 (2014).
doi: 10.1128/Aac.02412-14 pubmed: 24777092 pmcid: 4068535
Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E. & Larsson, D. G. J. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 42, D737–D743. https://doi.org/10.1093/nar/gkt1252 (2014).
doi: 10.1093/nar/gkt1252 pubmed: 24304895
Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220. https://doi.org/10.1128/aac.01310-13 (2014).
doi: 10.1128/aac.01310-13 pubmed: 24145532 pmcid: 3910750
Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15. https://doi.org/10.1093/nar/gku1196 (2015).
doi: 10.1093/nar/gku1196 pubmed: 25414349
Page, A. J. et al. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2, e000056. https://doi.org/10.1099/mgen.0.000056 (2016).
doi: 10.1099/mgen.0.000056 pubmed: 28348851 pmcid: 5320690
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).
doi: 10.1093/nar/gkab301 pubmed: 33885785 pmcid: 8265157
Schaufler, K. et al. Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages. Front. Microbiol. 7, 336. https://doi.org/10.3389/fmicb.2016.00336 (2016).
doi: 10.3389/fmicb.2016.00336 pubmed: 27014251 pmcid: 4794485

Auteurs

Lisa Bachmann (L)

University of Applied Science Neubrandenburg, Brodaer Str. 2, 17033, Neubrandenburg, Germany. bachmann@hs-nb.de.
Research Institute of Farm Animal Biology (FBN), Dummerstorf, Germany. bachmann@hs-nb.de.

Laura Weber (L)

University of Applied Science Neubrandenburg, Brodaer Str. 2, 17033, Neubrandenburg, Germany.

Wendy Liermann (W)

Research Institute of Farm Animal Biology (FBN), Dummerstorf, Germany.

Harald M Hammon (HM)

Research Institute of Farm Animal Biology (FBN), Dummerstorf, Germany.

Cora Delling (C)

Institute for Parasitology, School of Veterinary Medicine, University of Leipzig, Leipzig, Germany.

Franziska Dengler (F)

Institute of Physiology, University of Leipzig, Leipzig, Germany.
Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria.

Katharina Schaufler (K)

Institute of Pharmacy, University of Greifswald, Greifswald, Germany.
Department Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Centre for Infection Research, Helmholtz Institute for One Health, Greifswald, Germany.
Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.

Michael Schwabe (M)

Institute of Pharmacy, University of Greifswald, Greifswald, Germany.

Elias Eger (E)

Department Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Centre for Infection Research, Helmholtz Institute for One Health, Greifswald, Germany.

Karsten Becker (K)

Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany.

Anne Schütz (A)

Institute of Epidemiology, Friedrich-Loeffler-Institute, Greifswald, Insel Riems, Germany.

Timo Homeier-Bachmann (T)

Institute of Epidemiology, Friedrich-Loeffler-Institute, Greifswald, Insel Riems, Germany.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH