Colostrum as a source of ESBL-Escherichia coli in feces of newborn calves.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 04 2024
30 04 2024
Historique:
received:
30
11
2023
accepted:
23
04
2024
medline:
1
5
2024
pubmed:
1
5
2024
entrez:
30
4
2024
Statut:
epublish
Résumé
The aim of the present study was to determine if colostrum and the equipment for harvesting and feeding colostrum are sources of fecal ESBL/AmpC-producing Escherichia coli (ESBL/AmpC-E. coli) in calves. Therefore, 15 male calves fed with pooled colostrum on a dairy farm and held individually in an experimental barn, the colostrum pool and the equipment for harvesting and feeding colostrum were sampled and analyzed for the occurrence of ESBL/AmpC-E. coli. The ESBL-AmpC-E. coli suspicious isolates were subjected to whole-genome sequence analysis. Forty-three of 45 fecal samples were tested positive for ESBL/AmpC-E. coli. In the colostrum sample and in the milking pot, we also found ESBL/AmpC-E. coli. All 45 E. coli isolates were ESBL-producers, mainly commensal sequence type (ST) 10, but also human-extraintestinal pathogenic E. coli ST131 and ST117 were found. The clonal identity of six fecal isolates with the ESBL-E. coli isolate from the colostrum and of five fecal isolates with the strain from the milking pot demonstrates that the hygiene of colostrum or the colostrum equipment can play a significant role in the spread of ESBL-E. coli. Effective sanitation procedures for colostrum harvesting and feeding equipment are crucial to reduce the ESBL-E. coli shedding of neonatal dairy calves.
Identifiants
pubmed: 38688984
doi: 10.1038/s41598-024-60461-4
pii: 10.1038/s41598-024-60461-4
doi:
Substances chimiques
beta-Lactamases
EC 3.5.2.6
Bacterial Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9929Subventions
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : 01KI2015
Informations de copyright
© 2024. The Author(s).
Références
Tacconelli, E. et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2017).
doi: 10.1016/S1473-3099(17)30753-3
pubmed: 29276051
GBDAR Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248. https://doi.org/10.1016/S0140-6736(22)02185-7 (2022).
doi: 10.1016/S0140-6736(22)02185-7
Grover, N., Sahni, A. K. & Bhattacharya, S. Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Med. J. Armed Forces India 69, 4–10. https://doi.org/10.1016/j.mjafi.2012.02.001 (2013).
doi: 10.1016/j.mjafi.2012.02.001
pubmed: 24532926
Dahms, C. et al. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLoS One https://doi.org/10.1371/journal.pone.0143326 (2015).
doi: 10.1371/journal.pone.0143326
pubmed: 26606146
pmcid: 4659621
Eger, E. et al. Highly virulent and multidrug-resistant Escherichia coli sequence type 58 from a sausage in Germany. Antibiotics (Basel) https://doi.org/10.3390/antibiotics11081006 (2022).
doi: 10.3390/antibiotics11081006
pubmed: 36290018
Odenthal, S., Akineden, O. & Usleber, E. Extended-spectrum beta-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms. Int. J. Food Microbiol. 238, 72–78. https://doi.org/10.1016/j.ijfoodmicro.2016.08.036 (2016).
doi: 10.1016/j.ijfoodmicro.2016.08.036
pubmed: 27592073
Marshall, B., Petrowski, D. & Levy, S. B. Inter- and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proc. Natl. Acad. Sci. USA 87, 6609–6613. https://doi.org/10.1073/pnas.87.17.6609 (1990).
doi: 10.1073/pnas.87.17.6609
pubmed: 2204058
pmcid: 54586
Homeier-Bachmann, T. et al. Antibiotic-resistant Enterobacteriaceae in wastewater of Abattoirs. Antibiotics (Basel) https://doi.org/10.3390/antibiotics10050568 (2021).
doi: 10.3390/antibiotics10050568
pubmed: 34065908
Schaumburg, F. et al. The risk to import ESBL-producing Enterobacteriaceae and Staphylococcus aureus through chicken meat trade in Gabon. BMC Microbiol. 14, 286. https://doi.org/10.1186/s12866-014-0286-3 (2014).
doi: 10.1186/s12866-014-0286-3
pubmed: 25406798
pmcid: 4239323
Homeier-Bachmann, T., Kleist, J. F., Schutz, A. K. & Bachmann, L. Distribution of ESBL/AmpC-Escherichia coli on a dairy farm. Antibiotics (Basel) https://doi.org/10.3390/antibiotics11070940 (2022).
doi: 10.3390/antibiotics11070940
pubmed: 36290018
Weber, L. P. et al. Prevalence and risk factors for ESBL/AmpC-E. coli in pre-weaned dairy calves on dairy farms in Germany. Microorganisms 9, 2135 (2021).
doi: 10.3390/microorganisms9102135
pubmed: 34683456
pmcid: 8539614
Springer, H. R. et al. Antimicrobial resistance in fecal Escherichia coli and Salmonella enterica from dairy calves: A systematic review. Foodborne Pathog. Dis. 16, 23–34. https://doi.org/10.1089/fpd.2018.2529 (2019).
doi: 10.1089/fpd.2018.2529
pubmed: 30481058
Liu, J. et al. The fecal resistome of dairy cattle is associated with diet during nursing. Nat. Commun. 10, 4406. https://doi.org/10.1038/s41467-019-12111-x (2019).
doi: 10.1038/s41467-019-12111-x
pubmed: 31562300
pmcid: 6765000
Duse, A. et al. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 98, 500–516. https://doi.org/10.3168/jds.2014-8432 (2015).
doi: 10.3168/jds.2014-8432
pubmed: 25465547
Gonggrijp, M. A. et al. Prevalence and risk factors for extended-spectrum beta-lactamase- and AmpC-producing Escherichia coli in dairy farms. J. Dairy Sci. 99, 9001–9013. https://doi.org/10.3168/jds.2016-11134 (2016).
doi: 10.3168/jds.2016-11134
pubmed: 27638264
Hordijk, J. et al. Dynamics of faecal shedding of ESBL- or AmpC-producing Escherichia coli on dairy farms. J. Antimicrob. Chemother. 74, 1531–1538. https://doi.org/10.1093/jac/dkz035 (2019).
doi: 10.1093/jac/dkz035
pubmed: 30753489
pmcid: 6524482
Schmid, A. et al. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl. Environ. Microbiol. 79, 3027–3032. https://doi.org/10.1128/aem.00204-13 (2013).
doi: 10.1128/aem.00204-13
pubmed: 23455336
pmcid: 3623142
Brunton, L. A., Reeves, H. E., Snow, L. C. & Jones, J. R. A longitudinal field trial assesing the impact of feeding waste milk containing antibiotic residues on the prevalence of ESBL-producing Escherichia coli in calves. Prev. Vet. Med. 117, 403–412. https://doi.org/10.1016/j.prevetmed.2014.08.005 (2014).
doi: 10.1016/j.prevetmed.2014.08.005
pubmed: 25172121
Tetens, J. L., Billerbeck, S., Schwenker, J. A. & Holzel, C. S. Short communication: Selection of extended-spectrum beta-lactamase-producing Escherichia coli in dairy calves associated with antibiotic dry cow therapy—A cohort study. J. Dairy Sci. 102, 11449–11452. https://doi.org/10.3168/jds.2019-16659 (2019).
doi: 10.3168/jds.2019-16659
pubmed: 31629516
Heinemann, C., Leubner, C. D., Hayer, J. J. & Steinhoff-Wagner, J. Hygiene management in newborn individually housed dairy calves focusing on housing and feeding practices. J. Anim. Sci. https://doi.org/10.1093/jas/skaa391 (2021).
doi: 10.1093/jas/skaa391
pubmed: 34549291
pmcid: 8525503
He, Z., Yang, S., Ma, Y., Zhang, S. & Cao, Z. Detection of CTX-M-15 extended-spectrum beta-lactamases producing Escherichia coli isolates from colostrum and faeces of newborn dairy calves in China. Pathogens https://doi.org/10.3390/pathogens10091162 (2021).
doi: 10.3390/pathogens10091162
pubmed: 34959587
pmcid: 8707848
Mills, J. P. et al. Clinical and molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli infections in metro Detroit: Early dominance of the ST-131 clone. Infect. Dis. Ther. 9, 683–690. https://doi.org/10.1007/s40121-020-00321-6 (2020).
doi: 10.1007/s40121-020-00321-6
pubmed: 32683600
pmcid: 7452991
Godden, S. M., Lombard, J. E. & Woolums, A. R. Colostrum management for dairy calves. Vet. Clin. North Am. Food Anim. Pract. 35, 535–556. https://doi.org/10.1016/j.cvfa.2019.07.005 (2019).
doi: 10.1016/j.cvfa.2019.07.005
pubmed: 31590901
pmcid: 7125574
Ludden, C. et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: A genomic surveillance study. Lancet Microbe 2, e472–e480. https://doi.org/10.1016/S2666-5247(21)00117-8 (2021).
doi: 10.1016/S2666-5247(21)00117-8
pubmed: 34485958
pmcid: 8410606
Armengol, R. & Fraile, L. Colostrum and milk pasteurization improve health status and decrease mortality in neonatal calves receiving appropriate colostrum ingestion. J. Dairy Sci. 99, 4718–4725. https://doi.org/10.3168/jds.2015-10728 (2016).
doi: 10.3168/jds.2015-10728
pubmed: 26995131
Smith, B. I., Cady, S. V. & Aceto, H. W. Effect of formic acid treatment on colostrum quality, and on absorption and function of immunoglobulins: A randomized controlled trial in Holstein dairy calves. BMC Vet. Res. 18, 318. https://doi.org/10.1186/s12917-022-03418-x (2022).
doi: 10.1186/s12917-022-03418-x
pubmed: 35978339
pmcid: 9387083
Platell, J. L., Johnson, J. R., Cobbold, R. N. & Trott, D. J. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet. Microbiol. 153, 99–108. https://doi.org/10.1016/j.vetmic.2011.05.007 (2011).
doi: 10.1016/j.vetmic.2011.05.007
pubmed: 21658865
Riley, L. W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 20, 380–390. https://doi.org/10.1111/1469-0691.12646 (2014).
doi: 10.1111/1469-0691.12646
pubmed: 24766445
Dahmen, S., Métayer, V., Gay, E., Madec, J. Y. & Haenni, M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet. Microbiol. 162, 793–799. https://doi.org/10.1016/j.vetmic.2012.10.015 (2013).
doi: 10.1016/j.vetmic.2012.10.015
pubmed: 23127568
Irrgang, A. et al. Diversity of CTX-M-1-producing E. coli from German food samples and genetic diversity of the bla(CTX-M-1) region on IncI1 ST3 plasmids. Vet. Microbiol. 221, 98–104. https://doi.org/10.1016/j.vetmic.2018.06.003 (2018).
doi: 10.1016/j.vetmic.2018.06.003
pubmed: 29981716
Gerhold, G., Schulze, M. H., Gross, U. & Bohne, W. Multilocus sequence typing and CTX-M characterization of ESBL-producing E. coli: A prospective single-centre study in Lower Saxony, Germany. Epidemiol. Infect. 144, 3300–3304. https://doi.org/10.1017/s0950268816001412 (2016).
doi: 10.1017/s0950268816001412
pubmed: 27357252
Chen, J. W. et al. Antibiotic-resistant Escherichia coli and sequence type 131 in fecal colonization in dogs in Taiwan. Microorganisms https://doi.org/10.3390/microorganisms8091439 (2020).
doi: 10.3390/microorganisms8091439
pubmed: 33266460
pmcid: 7760966
Gregova, G. & Kmet, V. Antibiotic resistance and virulence of Escherichia coli strains isolated from animal rendering plant. Sci. Rep. 10, 17108. https://doi.org/10.1038/s41598-020-72851-5 (2020).
doi: 10.1038/s41598-020-72851-5
pubmed: 33051473
pmcid: 7553926
Friese, A. et al. Faecal occurrence and emissions of livestock-associated methicillin-resistant Staphylococcus aureus (laMRSA) and ESBL/AmpC-producing E. coli from animal farms in Germany. Berl. Munch. Tierarztl. Wochenschr. 126, 175–180 (2013).
pubmed: 23540202
Zhuge, X. et al. Chicken-source Escherichia coli within phylogroup F shares virulence genotypes and is closely related to extraintestinal pathogenic E. coli causing human infections. Transbound. Emerg. Dis. 68, 880–895. https://doi.org/10.1111/tbed.13755 (2021).
doi: 10.1111/tbed.13755
pubmed: 32722875
Kim, S. W., Karns, J. S., Van Kessel, J. A. S. & Haley, B. J. Genome sequences of five multidrug-resistant Escherichia coli sequence type 117 isolates recovered from dairy calves. Genome Announc. https://doi.org/10.1128/genomeA.00732-17 (2017).
doi: 10.1128/genomeA.00732-17
pubmed: 29192082
pmcid: 5722068
Dengler, F. et al. Cryptosporidium parvum competes with the intestinal epithelial cells for glucose and impairs systemic glucose supply in neonatal calves. Vet. Res. 54, 40. https://doi.org/10.1186/s13567-023-01172-y (2023).
doi: 10.1186/s13567-023-01172-y
pubmed: 37138353
pmcid: 10156424
Homeier-Bachmann, T. et al. Antibiotic-resistant Enterobacteriaceae in wastewater of abattoirs. Antibiotics 10, 568. https://doi.org/10.3390/antibiotics10050568 (2021).
doi: 10.3390/antibiotics10050568
pubmed: 34065908
pmcid: 8150771
Homeier-Bachmann, T. et al. Genomic analysis of ESBL-producing E. coli in wildlife from North-Eastern Germany. Antibiotics 11, 123 (2022).
doi: 10.3390/antibiotics11020123
pubmed: 35203726
pmcid: 8868512
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).
doi: 10.1089/cmb.2012.0021
pubmed: 22506599
pmcid: 3342519
Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; peer review: 2 approved]. Wellcome Open Res. https://doi.org/10.12688/wellcomeopenres.14826.1 (2018).
doi: 10.12688/wellcomeopenres.14826.1
pubmed: 30687793
pmcid: 6192448
Liu, B., Zheng, D. D., Jin, Q., Chen, L. H. & Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692. https://doi.org/10.1093/nar/gky1080 (2019).
doi: 10.1093/nar/gky1080
pubmed: 30395255
Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644. https://doi.org/10.1093/jac/dks261 (2012).
doi: 10.1093/jac/dks261
pubmed: 22782487
pmcid: 3468078
Carattoli, A. et al. In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903. https://doi.org/10.1128/Aac.02412-14 (2014).
doi: 10.1128/Aac.02412-14
pubmed: 24777092
pmcid: 4068535
Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E. & Larsson, D. G. J. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 42, D737–D743. https://doi.org/10.1093/nar/gkt1252 (2014).
doi: 10.1093/nar/gkt1252
pubmed: 24304895
Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220. https://doi.org/10.1128/aac.01310-13 (2014).
doi: 10.1128/aac.01310-13
pubmed: 24145532
pmcid: 3910750
Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15. https://doi.org/10.1093/nar/gku1196 (2015).
doi: 10.1093/nar/gku1196
pubmed: 25414349
Page, A. J. et al. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2, e000056. https://doi.org/10.1099/mgen.0.000056 (2016).
doi: 10.1099/mgen.0.000056
pubmed: 28348851
pmcid: 5320690
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).
doi: 10.1093/nar/gkab301
pubmed: 33885785
pmcid: 8265157
Schaufler, K. et al. Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages. Front. Microbiol. 7, 336. https://doi.org/10.3389/fmicb.2016.00336 (2016).
doi: 10.3389/fmicb.2016.00336
pubmed: 27014251
pmcid: 4794485