Omega-3 Fatty Acids and Risk of Ischemic Stroke in REGARDS.
Docosahexaenoic acid (DHA)
Epidemiology
Exploratory factor analysis
Incident ischemic stroke
Omega-3
Journal
Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297
Informations de publication
Date de publication:
27 Apr 2024
27 Apr 2024
Historique:
received:
12
12
2023
accepted:
24
04
2024
revised:
18
04
2024
medline:
28
4
2024
pubmed:
28
4
2024
entrez:
27
4
2024
Statut:
aheadofprint
Résumé
We examined associations between lipidomic profiles and incident ischemic stroke in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Plasma lipids (n = 195) were measured from baseline blood samples, and lipids were consolidated into underlying factors using exploratory factor analysis. Cox proportional hazards models were used to test associations between lipid factors and incident stroke, linear regressions to determine associations between dietary intake and lipid factors, and the inverse odds ratio weighting (IORW) approach to test mediation. The study followed participants over a median (IQR) of 7 (3.4-11) years, and the case-cohort substudy included 1075 incident ischemic stroke and 968 non-stroke participants. One lipid factor, enriched for docosahexaenoic acid (DHA, an omega-3 fatty acid), was inversely associated with stroke risk in a base model (HR = 0.84; 95%CI 0.79-0.90; P = 8.33 × 10
Identifiants
pubmed: 38676880
doi: 10.1007/s12975-024-01256-7
pii: 10.1007/s12975-024-01256-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NINDS NIH HHS
ID : U01 NS041588
Pays : United States
Organisme : NINDS NIH HHS
ID : U01 NS041588
Pays : United States
Organisme : NIA NIH HHS
ID : U01 NS041588
Pays : United States
Organisme : NIA NIH HHS
ID : U01 NS041588
Pays : United States
Organisme : NIH HHS
ID : R01 NS099209
Pays : United States
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.
doi: 10.1016/S1474-4422(18)30499-X
Howard VJ, et al. The reasons for geographic and racial differences in stroke study: objectives and design. Neuroepidemiology. 2005;25:135–43.
pubmed: 15990444
doi: 10.1159/000086678
Hu Y, Hu FB, Manson JE. Marine omega-3 supplementation and cardiovascular disease: an updated meta-analysis of 13 randomized controlled trials involving 127 477 participants. J Am Heart Assoc. 2019;8:e013543.
pubmed: 31567003
pmcid: 6806028
doi: 10.1161/JAHA.119.013543
Iso H, et al. Intake of fish and omega-3 fatty acids and risk of stroke in women. JAMA. 2001;285:304–12.
pubmed: 11176840
doi: 10.1001/jama.285.3.304
He K, et al. Fish consumption and risk of stroke in men. JAMA. 2002;288:3130–6.
pubmed: 12495393
doi: 10.1001/jama.288.24.3130
He K, et al. Fish consumption and incidence of stroke: a meta-analysis of cohort studies. Stroke. 2004;35:1538–42.
pubmed: 15155968
doi: 10.1161/01.STR.0000130856.31468.47
Manson JE, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380:33–44.
pubmed: 30415629
doi: 10.1056/NEJMoa1809944
Manson JE, et al. Vitamin D, marine n-3 fatty acids, and primary prevention of cardiovascular disease current evidence. Circ Res. 2020;126:112–28.
pubmed: 31895658
pmcid: 7001886
doi: 10.1161/CIRCRESAHA.119.314541
Saber H, et al. Omega-3 fatty acids and incident ischemic stroke and its atherothrombotic and cardioembolic subtypes in 3 US cohorts. Stroke. 2017;48:2678–85.
pubmed: 28830976
pmcid: 5769157
doi: 10.1161/STROKEAHA.117.018235
Eichelmann F, et al. Deep lipidomics in human plasma - cardiometabolic disease risk and effect of dietary fat modulation. Circulation. 2022. https://doi.org/10.1161/circulationaha.121.056805 .
doi: 10.1161/circulationaha.121.056805
pubmed: 35422138
pmcid: 9241667
Chaudhary NS, et al. Severity of hypertension mediates the association of hyperuricemia with stroke in the REGARDS case cohort study. Hypertension. 2020;75:246–56.
pubmed: 31786980
doi: 10.1161/HYPERTENSIONAHA.119.13580
Gillett SR, et al. Validating laboratory results in a national observational cohort study without field centers: the Reasons for Geographic and Racial Differences in Stroke cohort. Clin Biochem. 2014;47:243–6.
pubmed: 25130959
pmcid: 5038129
doi: 10.1016/j.clinbiochem.2014.08.003
Ament Z, et al. Nucleosides associated with incident ischemic stroke in the REGARDS and JHS cohorts. Neurology. 2022;98:e2097–107.
pubmed: 35264422
pmcid: 9169945
doi: 10.1212/WNL.0000000000200262
Bhave VM, et al. Plasma metabolites link dietary patterns to stroke risk. Ann Neurol. 2023;93:500–10.
pubmed: 36373825
doi: 10.1002/ana.26552
Ament Z, et al. Gut microbiota-associated metabolites and risk of ischemic stroke in REGARDS. J Cereb Blood Flow Metab. 2023;43:1089–98.
pubmed: 36883380
pmcid: 10291458
doi: 10.1177/0271678X231162648
Howard VJ, et al. Disparities in stroke incidence contributing to disparities in stroke mortality. Ann Neurol. 2011;69:619–27.
pubmed: 21416498
pmcid: 3595534
doi: 10.1002/ana.22385
Zakai NA, et al. ABO blood type and stroke risk: the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. J Thromb Haemost. 2014;12:564–70.
pubmed: 24444093
pmcid: 4913462
doi: 10.1111/jth.12507
Arora P, et al. Lipoprotein(a) and risk of ischemic stroke in the REGARDS study. Arterioscler Thromb Vasc Biol. 2019;39:810–8.
pubmed: 30786745
pmcid: 6511401
doi: 10.1161/ATVBAHA.118.311857
Gorsuch RL Factor analysis: classic edition. (Routledge, 2014).
Block G, Woods M, Potosky A, Clifford C. Validation of a self-administered diet history questionnaire using multiple diet records. J Clin Epidemiol. 1990;43:1327–35.
pubmed: 2254769
doi: 10.1016/0895-4356(90)90099-B
Block, G., Wakimoto, P. & Block, T. A revision of the Block Dietary Questionnaire and database, based on NHANES III data
Judd SE, et al. Dietary patterns are associated with incident stroke and contribute to excess risk of stroke in Black Americans. Stroke. 2013;44:3305–11.
pubmed: 24159061
pmcid: 3898713
doi: 10.1161/STROKEAHA.113.002636
Judd SE, Letter AJ, Shikany JM, Roth DL, Newby PK. Dietary patterns derived using exploratory and confirmatory factor analysis are stable and generalizable across race, region, and gender subgroups in the REGARDS study. Front Nutr. 2014;1:29.
pubmed: 25988129
Shikany JM, et al. Southern dietary pattern is associated with hazard of acute coronary heart disease in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. Circulation. 2015;132:804–14.
pubmed: 26260732
pmcid: 4558233
doi: 10.1161/CIRCULATIONAHA.114.014421
Kijpaisalratana N, et al. Association of circulating metabolites with racial disparities in hypertension and stroke in the REGARDS study. Neurology. 2023;100(22):e2312–20. https://doi.org/10.1212/WNL.0000000000207264 .
doi: 10.1212/WNL.0000000000207264
pubmed: 37068957
Cushman M, et al. N-terminal pro–B-type natriuretic peptide and stroke risk: the Reasons for Geographic and Racial Differences in Stroke cohort. Stroke. 2014;45:1646–50.
pubmed: 24757103
pmcid: 4142424
doi: 10.1161/STROKEAHA.114.004712
Panwar B, et al. Fibroblast growth factor 23 and risk of incident stroke in community-living adults. Stroke. 2015;46:322–8.
pubmed: 25563643
pmcid: 4308535
doi: 10.1161/STROKEAHA.114.007489
Olson NC, et al. Associations of coagulation factors IX and XI levels with incident coronary heart disease and ischemic stroke: the REGARDS study. J Thromb Haemost. 2017;15:1086–94.
pubmed: 28393470
pmcid: 9797027
doi: 10.1111/jth.13698
Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer. 2001. https://doi.org/10.1007/978-1-4757-3462-1 .
Nguyen QC, Osypuk TL, Schmidt NM, Glymour MM, Tchetgen Tchetgen EJ. Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting. Am J Epidemiol. 2015;181:349–56.
pubmed: 25693776
pmcid: 4339385
doi: 10.1093/aje/kwu278
Venø SK, et al. Marine n-3 polyunsaturated fatty acids and the risk of ischemic stroke. Stroke. 2019;50:274–82.
pubmed: 30602356
doi: 10.1161/STROKEAHA.118.023384
Yamagata K. Dietary docosahexaenoic acid inhibits neurodegeneration and prevents stroke. J Neurosci Res. 2021;99:561–72.
pubmed: 32964457
doi: 10.1002/jnr.24728
Whelton SP, He J, Whelton PK, Muntner P. Meta-analysis of observational studies on fish intake and coronary heart disease. Am J Cardiol. 2004;93:1119–23.
pubmed: 15110203
doi: 10.1016/j.amjcard.2004.01.038
Nestel P, et al. Indications for omega-3 long chain polyunsaturated fatty acid in the prevention and treatment of cardiovascular disease. Heart Lung Circ. 2015;24:769–79.
pubmed: 25936871
doi: 10.1016/j.hlc.2015.03.020
Siscovick DS, et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease. Circulation. 2017;135:e867–84.
pubmed: 28289069
pmcid: 6903779
doi: 10.1161/CIR.0000000000000482
He K, et al. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation. 2004;109:2705–11.
pubmed: 15184295
doi: 10.1161/01.CIR.0000132503.19410.6B
Lemaitre RN, et al. n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am J Clin Nutr. 2003;77:319–25.
pubmed: 12540389
doi: 10.1093/ajcn/77.2.319
Steffen BT, et al. Plasma n-3 and n-6 fatty acids are differentially related to carotid plaque and its progression: the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38:653–9.
pubmed: 29326315
pmcid: 5823763
doi: 10.1161/ATVBAHA.117.310366
Mozaffarian D, Wu JHY. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–67.
pubmed: 22051327
doi: 10.1016/j.jacc.2011.06.063
Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851:469–84.
pubmed: 25149823
doi: 10.1016/j.bbalip.2014.08.010
Borow KM, Nelson JR, Mason RP. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis. 2015;242:357–66.
pubmed: 26253795
doi: 10.1016/j.atherosclerosis.2015.07.035
Colussi G, Catena C, Novello M, Bertin N, Sechi LA. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: relevance for cardiovascular outcomes. Nutr Metab Cardiovasc Dis. 2017;27:191–200.
pubmed: 27692558
doi: 10.1016/j.numecd.2016.07.011
Nicholls SJ, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268.
pubmed: 33190147
pmcid: 7667577
doi: 10.1001/jama.2020.22258
Farukhi ZM, Mora S, Manson JE. Marine omega-3 fatty acids and cardiovascular disease prevention: seeking clearer water. Mayo Clin Proc. 2021;96:277–9.
pubmed: 33549246
doi: 10.1016/j.mayocp.2020.12.013
Özkaya A, Erdoğan HA, Acır İ, Çabalar M, Yayla V. The comparison of TOAST, CCS, and ASCO etiological classifications in ischemic stroke patients. Med J Bakirkoy. 2022;18:121–6.
doi: 10.4274/BMJ.galenos.2022.2021.12-16
Mente A, et al. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study. Lancet Diabetes Endocrinol. 2017;5:774–87.
pubmed: 28864143
doi: 10.1016/S2213-8587(17)30283-8
Chang C-H, et al. Safety and tolerability of prescription omega-3 fatty acids: a systematic review and meta-analysis of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2018;129:1–12.
pubmed: 29482765
doi: 10.1016/j.plefa.2018.01.001
Bhatt DL, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.
pubmed: 30415628
doi: 10.1056/NEJMoa1812792
Yokoyama M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.
pubmed: 17398308
doi: 10.1016/S0140-6736(07)60527-3
Jacobson TA. A new pure ω-3 eicosapentaenoic acid ethyl ester (AMR101) for the management of hypertriglyceridemia: the MARINE trial. Expert Rev Cardiovasc Ther. 2012;10:687–95.
pubmed: 22894624
doi: 10.1586/erc.12.56
Ballantyne CM, et al. Icosapent ethyl effects on fatty acid profiles in statin-treated patients with high triglycerides: the randomized, placebo-controlled ANCHOR study. Cardiol Ther. 2019;8:79–90.
pubmed: 30788718
pmcid: 6525216
doi: 10.1007/s40119-019-0131-8
Liao J, Xiong Q, Yin Y, Ling Z, Chen S. The effects of fish oil on cardiovascular diseases: systematical evaluation and recent advance. Front Cardiovasc Med. 2021;8:802306.
pubmed: 35071366
doi: 10.3389/fcvm.2021.802306
Zhang H, et al. Characterization of positional distribution of fatty acids and triacylglycerol molecular compositions of marine fish oils rich in omega-3 polyunsaturated fatty acids. Biomed Res Int. 2018;2018:3529682.
pubmed: 30112380
pmcid: 6077587
Dodds ED, McCoy MR, Rea LD, Kennish JM. Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry. Lipids. 2005;40:419–28.
pubmed: 16028722
doi: 10.1007/s11745-006-1399-8