Biocompatible natural deep eutectic solvent-based extraction and cellulolytic enzyme-mediated transformation of Pueraria mirifica isoflavones: a sustainable approach for increasing health-bioactive constituents.
Pueraria mirifica
Biotransformation
Cellulolytic enzymes
Isoflavonoid
Natural deep eutectic solvent
Journal
Bioresources and bioprocessing
ISSN: 2197-4365
Titre abrégé: Bioresour Bioprocess
Pays: Germany
ID NLM: 101665551
Informations de publication
Date de publication:
17 Aug 2021
17 Aug 2021
Historique:
received:
25
04
2021
accepted:
07
08
2021
medline:
17
8
2021
pubmed:
17
8
2021
entrez:
23
4
2024
Statut:
epublish
Résumé
The presence of specific gut microflora limits the biotransformation of Pueraria mirifica isoflavone (PMI) glycosides into absorbable aglycones, thus limiting their health benefits. Cellulolytic enzyme-assisted extraction (CAE) potentially solves this issue; however, solvent extraction requires recovery of the hydrophobic products. Here, we established the simultaneous transformation and extraction of PMIs using cellulolytic enzymes and natural deep eutectic solvents (NADESs). The NADES compositions were optimized to allow the use of NADESs as CAE media, and the extraction parameters were optimized using response surface methodology (RSM). The optimal conditions were 14.7% (v/v) choline chloride:propylene glycol (1:2 mol ratio, ChCl:PG) at 56.1 °C for the cellulolytic enzyme (262 mU/mL) reaction in which daidzin and genistin were extracted and wholly transformed to their aglycones daidzein and genistein. The extraction of PMIs using ChCl:PG is more efficient than that using conventional solvents; additionally, biocompatible ChCl:PG enhances cellulolytic enzyme activity, catalyzing the transformation of PMIs into compounds with higher estrogenicity and absorbability.
Identifiants
pubmed: 38650188
doi: 10.1186/s40643-021-00428-9
pii: 10.1186/s40643-021-00428-9
doi:
Types de publication
Journal Article
Langues
eng
Pagination
76Subventions
Organisme : Walailak University (TH)
ID : WU-IRG-63-005
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s).
Références
Arboleya S, Watkins C, Stanton C, Ross RP (2016) Gut Bifidobacteria populations in human health and aging. Front Microbiol 7:1204. https://doi.org/10.3389/fmicb.2016.01204
doi: 10.3389/fmicb.2016.01204
pubmed: 27594848
pmcid: 4990546
Bajkacz S, Adamek J (2017) Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta 168:329–335. https://doi.org/10.1016/j.talanta.2017.02.065
doi: 10.1016/j.talanta.2017.02.065
pubmed: 28391863
Braune A, Blaut M (2016) Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7(3):216–234. https://doi.org/10.1080/19490976.2016.1158395
doi: 10.1080/19490976.2016.1158395
pubmed: 26963713
pmcid: 4939924
Chen H, Hayn M, Esterbauer H (1992) Purification and characterization of two extracellular β-glucosidases from Trichoderma reesei. Biochim Biophys Acta 1121(1–2):54–60. https://doi.org/10.1016/0167-4838(92)90336-c
doi: 10.1016/0167-4838(92)90336-c
pubmed: 1599951
Chen KI, Yao Y, Chen HJ, Lo YC, Yu RC, Cheng KC (2016) Hydrolysis of isoflavone in black soy milk using cellulose bead as enzyme immobilizer. J Food Drug Anal 24(4):788–795. https://doi.org/10.1016/j.jfda.2016.03.007
doi: 10.1016/j.jfda.2016.03.007
pubmed: 28911617
Cheng QB, Zhang LW (2017) Highly efficient enzymatic preparation of daidzein in deep eutectic solvents. Molecules 22(1):186. https://doi.org/10.3390/molecules22010186
doi: 10.3390/molecules22010186
pmcid: 6155624
Daily JW, Ko BS, Ryuk J, Liu M, Zhang W, Park S (2019) Equol decreases hot flashes in postmenopausal women: a systematic review and meta-analysis of randomized clinical trials. J Med Food 22(2):127–139. https://doi.org/10.1089/jmf.2018.4265
doi: 10.1089/jmf.2018.4265
pubmed: 30592686
de Oliveira SF, Lemos TC, Sandora D, Monteiro M, Perrone D (2020) Fermentation of soybean meal improves isoflavone metabolism after soy biscuit consumption by adults. J Sci Food Agric 100(7):2991–2998. https://doi.org/10.1002/jsfa.10328
doi: 10.1002/jsfa.10328
Fernandez MLA, Boiteux J, Espino M, Gomez FJV, Silva MF (2018) Natural deep eutectic solvents-mediated extractions: the way forward for sustainable analytical developments. Anal Chim Acta 1038:1–10. https://doi.org/10.1016/j.aca.2018.07.059
doi: 10.1016/j.aca.2018.07.059
pubmed: 30278889
Gajardo-Parra NF, Cotroneo-Figueroa VP, Aravena P, Vesovic V, Canales RI (2020) Viscosity of choline chloride-based deep eutectic solvents: experiments and modeling. J Chem Eng Data 65(11):5581–5592. https://doi.org/10.1021/acs.jced.0c00715
doi: 10.1021/acs.jced.0c00715
González-Rivera J, Husanu E, Mero A, Ferrari C, Duce C, Tinè MR, D’Andrea F, Pomelli CS, Guazzelli L (2020) Insights into microwave heating response and thermal decomposition behavior of deep eutectic solvents. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.112357
doi: 10.1016/j.molliq.2019.112357
Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130(7):1695–1699. https://doi.org/10.1093/jn/130.7.1695
doi: 10.1093/jn/130.7.1695
pubmed: 10867038
Khodaverdian S, Dabirmanesh B, Heydari A, Dashtban-Moghadam E, Khajeh K, Ghazi F (2018) Activity, stability and structure of laccase in betaine based natural deep eutectic solvents. Int J Biol Macromol 107(Pt B):2574–2579. https://doi.org/10.1016/j.ijbiomac.2017.10.144
doi: 10.1016/j.ijbiomac.2017.10.144
pubmed: 29079436
Kongkaew C, Scholfield NC, Dhippayom T, Dilokthornsakul P, Saokaew S, Chaiyakunapruk N (2018) Efficacy and safety of Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham for menopausal women: a systematic review of clinical trials and the way forward. J Ethnopharmacol 216:162–174. https://doi.org/10.1016/j.jep.2018.01.028
doi: 10.1016/j.jep.2018.01.028
pubmed: 29409850
Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen ZY (2005) Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem 90(4):735–741. https://doi.org/10.1016/j.foodchem.2004.04.034
doi: 10.1016/j.foodchem.2004.04.034
Liu S (2017) Enzymes. In: Liu S (ed) Bioprocess engineering. Elsevier, Amsterdam
Mansur AR, Song NE, Jang HW, Lim TG, Yoo M, Nam TG (2019) Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem 293:438–445. https://doi.org/10.1016/j.foodchem.2019.05.003
doi: 10.1016/j.foodchem.2019.05.003
pubmed: 31151632
Mayo B, Vazquez L, Florez AB (2019) Equol: A bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients 11(9):2231. https://doi.org/10.3390/nu11092231
doi: 10.3390/nu11092231
pmcid: 6770660
Nakamura K, Zhu S, Komatsu K, Hattori M, Iwashima M (2020) Deglycosylation of the isoflavone c-glucoside puerarin by a combination of two recombinant bacterial enzymes and 3-oxo-glucose. Appl Environ Microbiol 86(14):e00607-00620. https://doi.org/10.1128/AEM.00607-20
doi: 10.1128/AEM.00607-20
pubmed: 32385077
pmcid: 7357486
Newton KM, Reed SD, Uchiyama S, Qu C, Ueno T, Iwashita S, Gunderson G, Fuller S, Lampe JW (2015) A cross-sectional study of equol producer status and self-reported vasomotor symptoms. Menopause 22(5):489–495. https://doi.org/10.1097/GME.0000000000000363
doi: 10.1097/GME.0000000000000363
pubmed: 25380274
Nirmala FS, Lee H, Kim JS, Jung CH, Ha TY, Jang YJ, Ahn J (2019) Fermentation improves the preventive effect of soybean against bone loss in senescence-accelerated mouse prone 6. J Food Sci 84(2):349–357. https://doi.org/10.1111/1750-3841.14433
doi: 10.1111/1750-3841.14433
pubmed: 30726579
Okabe Y, Shimazu T, Tanimoto H (2011) Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric 91(4):658–663. https://doi.org/10.1002/jsfa.4228
doi: 10.1002/jsfa.4228
pubmed: 21104834
Peerakam N, Sirisa-Ard P, Huy NQ, On TV, Long PT, Intharuksa A (2018) Isoflavonoids and phytoestrogens from Pueraria candollei var. mirifica related with appropriate ratios of ethanol extraction. Asian J Chem 30(9):2086–2090. https://doi.org/10.14233/ajchem.2018.21440
doi: 10.14233/ajchem.2018.21440
Peterson G, Barnes S (1991) Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun 179(1):661–667. https://doi.org/10.1016/0006-291x(91)91423-a
doi: 10.1016/0006-291x(91)91423-a
pubmed: 1883387
Phaisan S, Makkliang F, Putalun W, Sakamoto S, Yusakul G (2021) Development of a colorless Centella asiatica (L.) Urb. extract using a natural deep eutectic solvent (NADES) and microwave-assisted extraction (MAE) optimized by response surface methodology. RSC Adv 11(15):8741–8750. https://doi.org/10.1039/d0ra09934a
doi: 10.1039/d0ra09934a
pubmed: 35423359
pmcid: 8695212
Pyo Y-H, Lee T-C, Lee Y-C (2005) Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Res Int 38(5):551–559. https://doi.org/10.1016/j.foodres.2004.11.008
doi: 10.1016/j.foodres.2004.11.008
Qadir R, Anwar F, Batool F, Mushtaq M, Jabbar A (2018) Enzyme-assisted extraction of Momordica balsamina L. fruit phenolics: process optimized by response surface methodology. J Food Meas Charact 13(1):697–706. https://doi.org/10.1007/s11694-018-9982-2
doi: 10.1007/s11694-018-9982-2
Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76(2):447–453. https://doi.org/10.1093/ajcn/76.2.447
doi: 10.1093/ajcn/76.2.447
pubmed: 12145021
Setchell KD, Brown NM, Summer S, King EC, Heubi JE, Cole S, Guy T, Hokin B (2013) Dietary factors influence production of the soy isoflavone metabolite S−(−)equol in healthy adults. J Nutr 143(12):1950–1958. https://doi.org/10.3945/jn.113.179564
doi: 10.3945/jn.113.179564
pubmed: 24089421
pmcid: 3827640
Singh J, Kundu D, Das M, Banerjee R (2019) Enzymatic processing of juice from fruits/vegetables: an emerging trend and cutting edge research in food biotechnology. In: Kuddus M (ed) Enzymes in food biotechnology. Academic Press, Cambridge, pp 419–432
doi: 10.1016/B978-0-12-813280-7.00024-4
Uribe S, Sampedro JG (2003) Measuring solution viscosity and its effect on enzyme activity. Biol Proced Online 5(1):108–115. https://doi.org/10.1251/bpo52
doi: 10.1251/bpo52
pubmed: 14569610
pmcid: 154660
Utkina EA, Antoshina SV, Selishcheva AA, Sorokoumova GM, Rogozhkina EA, Shvets VI (2004) Isoflavones daidzein and genistein: Preparation by acid hydrolysis of their glycosides and the effect on phospholipid peroxidation. Russ J Bioorganic Chem 30(4):385–390. https://doi.org/10.1023/B:Rubi.0000037266.45053.45
doi: 10.1023/B:Rubi.0000037266.45053.45
Wang S, Yang Z, Peng N, Zhou J, Yong X, Yuan H, Zheng T (2018) Optimization of ionic liquids-based microwave-assisted hydrolysis of puerarin and daidzein derivatives from Radix Puerariae Lobatae extract. Food Chem 256:149–155. https://doi.org/10.1016/j.foodchem.2017.12.080
doi: 10.1016/j.foodchem.2017.12.080
pubmed: 29606431
Wang C, Liu X, Zhang M, Shao H, Zhang M, Wang X, Wang Q, Bao Z, Fan X, Li H (2019) Efficient enzyme-assisted extraction and conversion of polydatin to resveratrol from Polygonum cuspidatum using thermostable cellulase and immobilized β-glucosidase. Front Microbiol 10(445):445. https://doi.org/10.3389/fmicb.2019.00445
doi: 10.3389/fmicb.2019.00445
pubmed: 30972031
pmcid: 6445843
Xu HN, Zhang YX, He CH (2007) Ultrasonically assisted extraction of isoflavones from stem of Pueraria lobata (Willd.) Ohwi and its mathematical model. Chin J Chem Eng 15(6):861–867. https://doi.org/10.1016/S1004-9541(08)60015-4
doi: 10.1016/S1004-9541(08)60015-4
Xu WJ, Huang YK, Li F, Wang DD, Yin MN, Wang M, Xia ZN (2018) Improving β-glucosidase biocatalysis with deep eutectic solvents based on choline chloride. Biochem Eng J 138:37–46. https://doi.org/10.1016/j.bej.2018.07.002
doi: 10.1016/j.bej.2018.07.002
Yusakul G, Juengsanguanpornsuk W, Sritularak B, Phaisan S, Juengwatanatrakul T, Putalun W (2020) (+)-7-O-Methylisomiroestrol, a new chromene phytoestrogen from the Pueraria candollei var. mirifica root. Nat Prod Res. https://doi.org/10.1080/14786419.2020.1727473
doi: 10.1080/14786419.2020.1727473
pubmed: 32077760
Yusakul G, Kitisripanya T, Juengwatanatrakul T, Sakamoto S, Tanaka H, Putalun W (2018) Enzyme linked immunosorbent assay for total potent estrogenic miroestrol and deoxymiroestrol of Pueraria candollei, a Thai herb for menopause remedy. J Nat Med 72(3):641–650. https://doi.org/10.1007/s11418-018-1194-x
doi: 10.1007/s11418-018-1194-x
pubmed: 29492802
Zhang XG, Lu Y, Wang WN, Liu ZY, Liu JW, Chen XQ (2017) A novel enzyme-assisted approach for efficient extraction of Z-ligustilide from Angelica sinensis plants. Sci Rep 7(1):9783. https://doi.org/10.1038/s41598-017-10004-x
doi: 10.1038/s41598-017-10004-x
pubmed: 28852066
pmcid: 5575039
Zuorro A, Lavecchia R, Gonzalez-Delgado AD, Garcia-Martinez JB, L’Abbate P (2019) Optimization of enzyme-assisted extraction of flavonoids from corn husks. Processes 7(11):804. https://doi.org/10.3390/pr7110804
doi: 10.3390/pr7110804