Piezo1 stretch-activated channel activity differs between murine bone marrow-derived and cardiac tissue-resident macrophages.
TRPV4
cryoablation
immunity
mechanotransduction
scar
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
20 Apr 2024
20 Apr 2024
Historique:
received:
06
04
2023
accepted:
14
03
2024
medline:
20
4
2024
pubmed:
20
4
2024
entrez:
20
4
2024
Statut:
aheadofprint
Résumé
Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦ
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : #422681845
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : #412853334
Organisme : La Caixa Foundation
ID : #100010434
Organisme : Deutsche Gesellschaft für Kardiologie-Herz und Kreislaufforschung. (DGK)
ID : DGK04/2022
Informations de copyright
© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
Afgan, E., Baker, D., Batut, B., Van Den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman‐Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg, D. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46(W1), W537–W544.
Atcha, H., Jairaman, A., Holt, J. R., Meli, V. S., Nagalla, R. R., Veerasubramanian, P. K., Brumm, K. T., Lim, H. E., Othy, S., Cahalan, M. D., Pathak, M. M., & Liu, W. F. (2021). Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nature Communications, 12(1), 3256.
Bajpai, G., Schneider, C., Wong, N., Bredemeyer, A., Hulsmans, M., Nahrendorf, M., Epelman, S., Kreisel, D., Liu, Y., Itoh, A., Shankar, T. S., Selzman, C. H., Drakos, S. G., & Lavine, K. J. (2018). The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine, 24(8), 1234–1245.
Baratchi, S., Zaldivia, M. T. K., Wallert, M., Loseff‐Silver, J., Al‐Aryahi, S., Zamani, J., Thurgood, P., Salim, A., Htun, N. M., Stub, D., Vahidi, P., Duffy, S. J., Walton, A., Nguyen, T. H. A., Jaworowski, A., Khoshmanesh, K., & Peter, K. (2020). Transcatheter aortic valve implantation represents an anti‐inflammatory therapy via reduction of shear stress‐induced, piezo‐1‐mediated monocyte activation. Circulation, 142(11), 1092–1105.
Beaulieu‐Laroche, L., Christin, M., Donoghue, A., Agosti, F., Yousefpour, N., Petitjean, H., Davidova, A., Stanton, C., Khan, U., Dietz, C., Faure, E., Fatima, T., Macpherson, A., Mouchbahani‐Constance, S., Bisson, D. G., Haglund, L., Ouellet, J. A., Stone, L. S., Samson, J., Smith, M.‐J. O., Ask, K., Ribeiro‐Da‐Silva, A., Blunck, R., Poole, K., Bourinet, E., & Sharif‐Naeini, R. (2020). TACAN is an ion channel involved in sensing mechanical pain. Cell, 180(5), 956–967. e17 e917.
Beech, D. J., & Kalli, A. C. (2019). Force sensing by piezo channels in cardiovascular health and disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(11), 2228–2239.
Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., Lum, J., Zhang, X.‐M., Foo, S., Nakamizo, S., Duan, K., Kong, W. T., Gentek, R., Balachander, A., Carbajo, D., Bleriot, C., Malleret, B., Tam, J. K. C., Baig, S., Shabeer, M., Toh, S.‐A. E.e S., Schlitzer, A., Larbi, A., Marichal, T., Malissen, B., Chen, J., Poidinger, M., Kabashima, K., Bajenoff, M., Ng, L. G., Angeli, V., & Ginhoux, F. (2019). Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science, 363(6432), eaau0964.
Chen, X., Wanggou, S., Bodalia, A., Zhu, M., Dong, W., Fan, J. J., Yin, W. C., Min, H.‐K., Hu, M., Draghici, D., Dou, W., Li, F., Coutinho, F. J., Whetstone, H., Kushida, M. M., Dirks, P. B., Song, Y., Hui, C.‐C., Sun, Y. U., Wang, L. U.‐Y., Li, X., & Huang, X. I. (2018). A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron, 100(4), 799–815. e7.e797.
Delmas, P., Parpaite, T., & Coste, B. (2022). PIEZO channels and newcomers in the mammalian mechanosensitive ion channel family. Neuron, 110(17), 2713–2727.
Dutta, B., Goswami, R., & Rahaman, S. O. (2020). TRPV4 plays a role in matrix stiffness‐induced macrophage polarization. Frontiers in Immunology, 11, 570195.
Emig, R., Zgierski‐Johnston, C. M., Timmermann, V., Taberner, A. J., Nash, M. P., Kohl, P., & Peyronnet, R. (2021). Passive myocardial mechanical properties: Meaning, measurement, models. Biophysical Reviews, 13(5), 587–610.
Epelman, S., Lavine, K. J., Beaudin, A. E., Sojka, D. K., Carrero, J. A., Calderon, B., Brija, T., Gautier, E. L., Ivanov, S., Satpathy, A. T., Schilling, J. D., Schwendener, R., Sergin, I., Razani, B., Forsberg, E. C., Yokoyama, W. M., Unanue, E. R., Colonna, M., Randolph, G. J., & Mann, D. L. (2014). Embryonic and adult‐derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity, 40(1), 91–104.
Fernandez, M. C., Kopton, R. A., Simon‐Chica, A., Madl, J., Hilgendorf, I., Zgierski‐Johnston, C. M., & Schneider‐Warme, F. (2021). Channelrhodopsins for cell‐type specific illumination of cardiac electrophysiology. Methods in Molecular Biology, 2191, 287–307.
Forget, A., Gianni‐Barrera, R., Uccelli, A., Sarem, M., Kohler, E., Fogli, B., Muraro, M. G., Bichet, S., Aumann, K., Banfi, A., & Shastri, V. P. (2019). Mechanically defined microenvironment promotes stabilization of microvasculature, which correlates with the enrichment of a novel piezo‐1+ population of circulating CD11b+/CD115+ monocytes. Advanced Materials, 31(21), e1808050.
Gannier, F., White, E., Lacampagne, A., Garnier, D., & Guennec, J.‐Y. L. (1994). Streptomycin reverses a large stretch induced increase in [Ca2+]i in isolated guinea pig ventricular myocytes. Cardiovascular Research, 28(8), 1193–1198.
Greiner, J., Schiatti, T., Kaltenbacher, W., Dente, M., Semenjakin, A., Kok, T., Fiegle, D. J., Seidel, T., Ravens, U., Kohl, P., Peyronnet, R., & Rog‐Zielinska, E. A. (2022). Consecutive‐day ventricular and atrial cardiomyocyte isolations from the same heart: Shifting the cost‐benefit balance of cardiac primary cell research. Cells, 11(2), 233.
Heidt, T., Courties, G., Dutta, P., Sager, H. B., Sebas, M., Iwamoto, Y., Sun, Y., Da Silva, N., Panizzi, P., Van Der Laan, A. M., Swirski, F. K., Weissleder, R., & Nahrendorf, M. (2014). Differential contribution of monocytes to heart macrophages in steady‐state and after myocardial infarction. Circulation Research, 115(2), 284–295.
Hulsmans, M., Clauss, S., Xiao, L., Aguirre, A. D., King, K. R., Hanley, A., Hucker, W. J., Wülfers, E. M., Seemann, G., Courties, G., Iwamoto, Y., Sun, Y., Savol, A. J., Sager, H. B., Lavine, K. J., Fishbein, G. A., Capen, D. E., Da Silva, N., Miquerol, L., Wakimoto, H., Seidman, C. E., Seidman, J. G., Sadreyev, R. I., Naxerova, K., Mitchell, R. N., Brown, D., Libby, P., Weissleder, R., Swirski, F. K., Kohl, P., Vinegoni, C., Milan, D. J., Ellinor, P. T., & Nahrendorf, M. (2017). Macrophages facilitate electrical conduction in the heart. Cell, 169(3), 510–522. e20.
Jakob, D., Klesen, A., Allegrini, B., Darkow, E., Aria, D., Emig, R., Chica, A. S., Rog‐Zielinska, E. A., Guth, T., Beyersdorf, F., Kari, F. A., Proksch, S., Hatem, S. N., Karck, M., Künzel, S. R., Guizouarn, H., Schmidt, C., Kohl, P., Ravens, U., & Peyronnet, R. (2021). Piezo1 and BK(Ca) channels in human atrial fibroblasts: Interplay and remodelling in atrial fibrillation. Journal of Molecular and Cellular Cardiology, 158, 49–62.
Jiang, F., Yin, K., Wu, K., Zhang, M., Wang, S., Cheng, H., Zhou, Z., & Xiao, B. (2021). The mechanosensitive Piezo1 channel mediates heart mechano‐chemo transduction. Nature Communications, 12(1), 869.
Künzel, S. R., Rausch, J. S. E., Schäffer, C., Hoffmann, M., Künzel, K., Klapproth, E., Kant, T., Herzog, N., Küpper, J.‐H., Lorenz, K., Dudek, S., Emig, R., Ravens, U., Rog‐Zielinska, E. A., Peyronnet, R., & El‐Armouche, A. (2020). Modeling atrial fibrosis in vitro‐Generation and characterization of a novel human atrial fibroblast cell line. FEBS Open Biology, 10(7), 1210–1218.
Lee, M., Du, H., Winer, D. A., Clemente‐Casares, X., & Tsai, S. (2022). Mechanosensing in macrophages and dendritic cells in steady‐state and disease. Frontiers in Cell and Developmental Biology, 10, 1044729.
Li, M., Zhang, X.i, Wang, M., Wang, Y., Qian, J., Xing, X., Wang, Z., You, Y., Guo, K., Chen, J., Gao, D., Zhao, Y., Zhang, L., Chen, R., Cui, J., & Ren, Z. (2022). Activation of Piezo1 contributes to matrix stiffness‐induced angiogenesis in hepatocellular carcinoma. Cancer Communications, 42(11), 1162–1184.
Liao, J., Lu, W., Chen, Y., Duan, X., Zhang, C., Luo, X., Lin, Z., Chen, J., Liu, S., Yan, H., Chen, Y., Feng, H., Zhou, D., Chen, X.u, Zhang, Z., Yang, Q., Liu, X., Tang, H., Li, J., Makino, A., Yuan, J. X.‐J., Zhong, N., Yang, K., & Wang, J. (2021). Upregulation of piezo1 (piezo type mechanosensitive ion channel component 1) enhances the intracellular free calcium in pulmonary arterial smooth muscle cells from idiopathic pulmonary arterial hypertension patients. Hypertension, 77(6), 1974–1989.
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930.
Liu, H., Hu, J., Zheng, Q., Feng, X., Zhan, F., Wang, X., Xu, G., & Hua, F. (2022). Piezo1 channels as force sensors in mechanical force‐related chronic inflammation. Frontiers in Immunology, 13, 816149.
Lother, A., Bondareva, O., Saadatmand, A. R., Pollmeier, L., Härdtner, C., Hilgendorf, I., Weichenhan, D., Eckstein, V., Plass, C., Bode, C., Backs, J., Hein, L., & Gilsbach, R. (2021). Diabetes changes gene expression but not DNA methylation in cardiac cells. Journal of Molecular and Cellular Cardiology, 151, 74–87.
Mchugh, B. J., Buttery, R., Lad, Y., Banks, S., Haslett, C., & Sethi, T. (2010). Integrin activation by Fam38A uses a novel mechanism of R‐Ras targeting to the endoplasmic reticulum. Journal of Cell Science, 123(Pt 1), 51–61.
Michalick, L., & Kuebler, W. M. (2020). TRPV4‐A missing link between mechanosensation and immunity. Frontiers in Immunology, 11, 413.
Nicolás‐Ávila, J. A., Lechuga‐Vieco, A. V., Esteban‐Martínez, L., Sánchez‐Díaz, M., Díaz‐García, E., Santiago, D. J., Rubio‐Ponce, A., Li, J. L., Balachander, A., Quintana, J. A., Martínez‐De‐Mena, R., Castejón‐Vega, B., Pun‐García, A., Través, P. G., Bonzón‐Kulichenko, E., García‐Marqués, F., Cussó, L., A‐González, N., González‐Guerra, A., … Hidalgo, A. (2020). A network of macrophages supports mitochondrial homeostasis in the heart. Cell, 183(1), 94–109. e23.
Nikolaev, Y. A., Cox, C. D., Ridone, P., Rohde, P. R., Cordero‐Morales, J. F., Vasquez, V., Laver, D. R., & Martinac, B. (2019). Mammalian TRP ion channels are insensitive to membrane stretch. Journal of Cell Science, 132(23), jcs238360.
Pachitariu, M., & Stringer, C. (2022). Cellpose 2.0: How to train your own model. Nature Methods, 19(12), 1634–1641.
Parkhurst, C. N., Yang, G., Ninan, I., Savas, J. N., Yates, J. R., Lafaille, J. J., Hempstead, B. L., Littman, D. R., & Gan, W.‐B. (2013). Microglia promote learning‐dependent synapse formation through BDNF. Cell, 155, 1596–1609.
Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac mechano‐gated ion channels and arrhythmias. Circulation Research, 118(2), 311–329.
Romani, P., Valcarcel‐Jimenez, L., Frezza, C., & Dupont, S. (2021). Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology, 22(1), 22–38.
Rosales‐Alvarez, R. E., Rettkowski, J., Herman, J. S., Dumbović, G., Cabezas‐Wallscheid, N., & Grün, D. (2023). VarID2 quantifies gene expression noise dynamics and unveils functional heterogeneity of ageing hematopoietic stem cells. Genome Biology, 24(1), 148.
Santoni, G., Morelli, M. B., Amantini, C., Santoni, M., Nabissi, M., Marinelli, O., & Santoni, A. (2018). ”Immuno‐transient receptor potential ion channels“: The role in monocyte‐ and macrophage‐mediated inflammatory responses. Frontiers in Immunology, 9, 1273.
Scheraga, R. G., Abraham, S., Niese, K. A., Southern, B. D., Grove, L. M., Hite, R. D., Mcdonald, C., Hamilton, T. A., & Olman, M. A. (2016). TRPV4 mechanosensitive ion channel regulates lipopolysaccharide‐stimulated macrophage phagocytosis. Journal of Immunology, 196(1), 428–436.
Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell detection with star‐convex polygons. Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part II 11, Springer.
Selezneva, A., Gibb, A. J., & Willis, D. (2022). The contribution of ion channels to shaping macrophage behaviour. Frontiers in Pharmacology, 13, 970234.
Simon‐Chica, A., Fernández, M. C., Wülfers, E. M., Lother, A., Hilgendorf, I., Seemann, G., Ravens, U., Kohl, P., & Schneider‐Warme, F. (2022). Novel insights into the electrophysiology of murine cardiac macrophages: Relevance of voltage‐gated potassium channels. Cardiovascular Research, 118(3), 798–813.
Solis, A. G., Bielecki, P., Steach, H. R., Sharma, L., Harman, C. C. D., Yun, S., De Zoete, M. R., Warnock, J. N., To, S. D. F., York, A. G., Mack, M., Schwartz, M. A., Dela Cruz, C. S., Palm, N. W., Jackson, R., & Flavell, R. A. (2019). Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature, 573(7772), 69–74.
Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: A generalist algorithm for cellular segmentation. Nature Methods, 18(1), 100–106.
Suchyna, T. M., Markin, V. S., & Sachs, F. (2009). Biophysics and structure of the patch and the gigaseal. Biophysical Journal, 97(3), 738–747.
Syeda, R., Xu, J., Dubin, A. E., Coste, B., Mathur, J., Huynh, T., Matzen, J., Lao, J., Tully, D. C., Engels, I. H., Petrassi, H. M., Schumacher, A. M., Montal, M., Bandell, M., & Patapoutian, A. (2015). Chemical activation of the mechanotransduction channel Piezo1. Elife, 4, e07369.
Tang, Y. U., Zhao, C., Zhuang, Y., Zhong, A., Wang, M., Zhang, W., & Zhu, L. (2023). Mechanosensitive Piezo1 protein as a novel regulator in macrophages and macrophage‐mediated inflammatory diseases. Frontiers in Immunology, 14, 1149336.
Vero Li, J., Cox, D. C., & Martinac, B. (2021). The anchor domain is critical for Piezo1 channel mechanosensitivity. Channels (Austin). 15(1), 438–446.
Vicente, R., Escalada, A., Coma, M., Fuster, G., Sánchez‐Tilló, E., López‐Iglesias, C., Soler, C., Solsona, C., Celada, A., & Felipe, A. (2003). Differential voltage‐dependent K+ channel responses during proliferation and activation in macrophages. Journal of Biological Chemistry, 278(47), 46307–46320.
Villalonga, N., David, M., Bielanska, J., Vicente, R., Comes, N., Valenzuela, C., & Felipe, A. (2010). Immunomodulation of voltage‐dependent K+ channels in macrophages: Molecular and biophysical consequences. Journal of General Physiology, 135(2), 135–147.
Weischenfeldt, J., & Porse, B. (2008). Bone marrow‐derived macrophages (BMM): Isolation and applications. CSH Protoc. https://doi.org/10.1101/pdb.prot5080
Wong, N. R., Mohan, J., Kopecky, B. J., Guo, S., Du, L., Leid, J., Feng, G., Lokshina, I., Dmytrenko, O., Luehmann, H., Bajpai, G., Ewald, L., Bell, L., Patel, N., Bredemeyer, A., Weinheimer, C. J., Nigro, J. M., Kovacs, A., Morimoto, S., Bayguinov, P. O., Fisher, M. R., Stump, W. T., Greenberg, M., Fitzpatrick, J. A. J., Epelman, S., Kreisel, D., Sah, R., Liu, Y., Hu, H., & Lavine, K. J. (2021). Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 54(9), 2072–2088. e7.
Xu, J., Gao, C., He, Y., Fang, X., Sun, D., Peng, Z., Xiao, H., Sun, M., Zhang, P., Zhou, T., Yang, X., Yu, Y., Li, R., Zou, X., Shu, H., Qiu, Y., Zhou, X.i, Yuan, S., Yao, S., & Shang, Y. (2023). NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF‐kappaB‐NFAT5 complex during septic immunosuppression. Molecular Therapy, 31(1), 154–173.
Yu, Z. E.‐Y., Gong, H., Kesteven, S., Guo, Y., Wu, J., Li, J. V., Cheng, D., Zhou, Z., Iismaa, S. E., Kaidonis, X., Graham, R. M., Cox, C. D., Feneley, M. P., & Martinac, B. (2022). Piezo1 is the cardiac mechanosensor that initiates the cardiomyocyte hypertrophic response to pressure overload in adult mice. Nature Cardiovascular Research, 1(6), 577–591.
Zhou, Z., Li, J. V., Martinac, B., & Cox, C. D. (2021). Loss‐of‐function piezo1 mutations display altered stability driven by ubiquitination and proteasomal degradation. Frontiers in Pharmacology, 12, 766416.