Impact of macronutrients intake on glycemic homeostasis of preterm infants: evidence from continuous glucose monitoring.
Continuous glucose monitoring
Neonatal glucose
Neonatal hyperglycemia
Neonatal hypoglycemia
Neonatal nutrition
Preterm infants
Journal
European journal of pediatrics
ISSN: 1432-1076
Titre abrégé: Eur J Pediatr
Pays: Germany
ID NLM: 7603873
Informations de publication
Date de publication:
18 Apr 2024
18 Apr 2024
Historique:
received:
01
01
2024
accepted:
17
03
2024
revised:
22
02
2024
medline:
19
4
2024
pubmed:
19
4
2024
entrez:
18
4
2024
Statut:
aheadofprint
Résumé
Nutritional intake could influence the blood glucose profile during early life of preterm infants. We investigated the impact of macronutrient intake on glycemic homeostasis using continuous glucose monitoring (CGM). We analyzed macronutrient intake in infants born ≤ 32 weeks gestational age (GA) and/or with birth weight ≤ 1500 g. CGM was started within 48 h of birth and maintained for 5 days. Mild and severe hypoglycemia were defined as sensor glucose (SG) < 72 mg/dL and <47 mg/dL, respectively, while mild and severe hyperglycemia were SG > 144 mg/dL and >180 mg/dL. Data from 30 participants were included (age 29.9 weeks (29.1; 31.2), birthweight 1230.5 g (1040.0; 1458.6)). A reduced time in mild hypoglycemia was associated to higher amino acids intake (p = 0.011) while increased exposure to hyperglycemia was observed in the presence of higher lipids intake (p = 0.031). The birthweight was the strongest predictor of neonatal glucose profile with an inverse relationship between the time spent in hyperglycemia and birthweight (p = 0.007). Conclusions: Macronutrient intakes influence neonatal glucose profile as described by continuous glucose monitoring. CGM might contribute to adjust nutritional intakes in preterm infants. What is Known: • Parenteral nutrition may affect glucose profile during the first days of life of preterm infants. What is New: • Continuous glucose monitoring describes the relationship between daily parenteral nutrient intakes and time spent in hypo and hyperglycemic ranges.
Identifiants
pubmed: 38637447
doi: 10.1007/s00431-024-05532-4
pii: 10.1007/s00431-024-05532-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministero della Salute
ID : GR-RF 2019-12368539
Informations de copyright
© 2024. The Author(s).
Références
Shah R, Harding J, Brown J, McKinlay C (2019) Neonatal glycaemia and neurodevelopmental outcomes: a systematic review and meta-analysis. Neonatology 115(2):116–126
doi: 10.1159/000492859
pubmed: 30408811
Paulsen ME, Brown SJ, Satrom KM, Scheurer JM, Ramel SE, Rao RB (2021) Long-term outcomes after early neonatal hyperglycemia in VLBW infants: a systematic review. Neonatology 118(5):509–521
doi: 10.1159/000517951
pubmed: 34412051
Stensvold HJ, Strommen K, Lang AM, Abrahamsen TG, Steen EK, Pripp AH, Ronnestad AE (2015) Early enhanced parenteral nutrition, hyperglycemia, and death among extremely low-birth-weight infants. JAMA Pediatr 169(11):1003–1010
doi: 10.1001/jamapediatrics.2015.1667
pubmed: 26348113
Cormack BE, Harding JE, Miller SP, Bloomfield FH (2019) The influence of early nutrition on brain growth and neurodevelopment in extremely preterm babies: a narrative review. Nutrients 11(9):2029. https://doi.org/10.3390/nu11092029 . PMID: 31480225; PMCID: PMC6770288
doi: 10.3390/nu11092029
pubmed: 31480225
pmcid: 6770288
Galderisi A, Facchinetti A, Steil GM, Ortiz-Rubio P, Cavallin F, Tamborlane WV, Baraldi E, Cobelli C, Trevisanuto D (2017) Continuous glucose monitoring in very preterm infants: a randomized controlled trial. Pediatrics 140(4):e20171162. https://doi.org/10.1542/peds.2017-1162 . Epub 2017 Sep 15. PMID: 28916591
doi: 10.1542/peds.2017-1162
pubmed: 28916591
Beardsall K, Thomson L, Guy C, Iglesias-Platas I, van Weissenbruch MM, Bond S, Allison A, Kim S, Petrou S, Pantaleo B, Hovorka R, Dunger D, REACT collaborative (2021) Real-time continuous glucose monitoring in preterm infants (REACT): an international, open-label, randomised controlled trial. Lancet Child Adolesc Health 5(4):265–273. https://doi.org/10.1016/S2352-4642(20)30367-9 . Epub 2021 Feb 10. PMID: 33577770; PMCID: PMC7970623
doi: 10.1016/S2352-4642(20)30367-9
pubmed: 33577770
pmcid: 7970623
Lees CC, Stampalija T, Baschat A, da Silva Costa F, Ferrazzi E, Figueras F, Hecher K, Kingdom J, Poon LC, Salomon LJ, Unterscheider J (2020) ISUOG Practice guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol 56(2):298–312. https://doi.org/10.1002/uog.22134 . PMID: 32738107
doi: 10.1002/uog.22134
pubmed: 32738107
Villar J, Giuliani F, Fenton TR, Ohuma EO, Ismail LC, Kennedy SH (2016) Consortium IN-s. INTERGROWTH-21st very preterm size at birth reference charts. Lancet 387(10021):844–845
doi: 10.1016/S0140-6736(16)00384-6
pubmed: 26898853
The CRIB (1993) (Clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. Int Neonatal Netw Lancet 342(8865):193–198
Beardsall K, Thomson L, Elleri D, Dunger DB, Hovorka R (2020) Feasibility of automated insulin delivery guided by continuous glucose monitoring in preterm infants. Arch Dis Child Fetal Neonatal Ed 105(3):279–284. https://doi.org/10.1136/archdischild-2019-316871 . Epub 2019 Aug 9. PMID: 31399480; PMCID: PMC7363782
doi: 10.1136/archdischild-2019-316871
pubmed: 31399480
Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R, Group PNGW et al (2005) 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 41(Suppl 2):S1–87
pubmed: 16254497
Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, Palmer CR, van Weissenbruch M et al (2008) Early insulin therapy in very-low-birth-weight infants. N Engl J Med 359(18):1873–1884
doi: 10.1056/NEJMoa0803725
pubmed: 18971490
Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, Palmer CR, Ong K et al (2010) Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the NIRTURE study. J Pediatr 157(5):715–9.e1-3
doi: 10.1016/j.jpeds.2010.04.032
pubmed: 20570286
Burattini I, Bellagamba MP, Spagnoli C, D’Ascenzo R, Mazzoni N, Peretti A et al (2013) Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: a randomized clinical trial. J Pediatr 163(5):1278–82e1
doi: 10.1016/j.jpeds.2013.06.075
pubmed: 23941670
te Braake FW, van den Akker CH, Wattimena DJ, Huijmans JG, van Goudoever JB (2005) Amino acid administration to premature infants directly after birth. J Pediatr 147(4):457–461
doi: 10.1016/j.jpeds.2005.05.038
van Kempen AA, van der Crabben SN, Ackermans MT, Endert E, Kok JH, Sauerwein HP (2006) Stimulation of gluconeogenesis by intravenous lipids in preterm infants: response depends on fatty acid profile. Am J Physiol Endocrinol Metab 290(4):E723–E730
doi: 10.1152/ajpendo.00303.2005
pubmed: 16291574
Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, VanWeissenbruch M, Midgley P et al (2013) Validation of the continuous glucose monitoring sensor in preterm infants. Arch Dis Child Fetal Neonatal Ed 98(2):F136–F140
doi: 10.1136/archdischild-2012-301661
pubmed: 22791467
Tottman AC, Alsweiler JM, Bloomfield FH, Pan M, Harding JE (2017) Relationship between measures of neonatal glycemia, neonatal illness, and 2-Year outcomes in very Preterm infants. J Pediatr 188:115–121
doi: 10.1016/j.jpeds.2017.05.052
pubmed: 28647271
Tottman AC, Bloomfield FH, Cormack BE, Harding JE, Mohd Slim MA, Weston AF, Alsweiler JM (2018) Relationships between Early Nutrition and blood glucose concentrations in very Preterm infants. J Pediatr Gastroenterol Nutr 66(6):960–966
doi: 10.1097/MPG.0000000000001929
pubmed: 29481441