Chymotrypsin activity signals to intestinal epithelium by protease-activated receptor-dependent mechanisms.

MAPK PAR1 PAR2 calcium signalling chymotrypsin intestinal epithelium organoids

Journal

British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536

Informations de publication

Date de publication:
18 Apr 2024
Historique:
revised: 04 01 2024
received: 29 06 2023
accepted: 30 01 2024
medline: 19 4 2024
pubmed: 19 4 2024
entrez: 18 4 2024
Statut: aheadofprint

Résumé

Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.

Sections du résumé

BACKGROUND AND PURPOSE OBJECTIVE
Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells.
EXPERIMENTAL APPROACH METHODS
The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids.
KEY RESULTS RESULTS
We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin.
CONCLUSION AND IMPLICATIONS CONCLUSIONS
Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.

Identifiants

pubmed: 38637276
doi: 10.1111/bph.16341
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : European Research Council Consolidator
ID : ERC- 310973 PIPE
Organisme : Fondation pour la Recherche Médicale
ID : FDT202204014931
Organisme : Agence Nationale de la Recherche
ID : ANR-18-CE18-0019
Organisme : Agence Nationale de la Recherche
ID : ANR-20-CE18-0024

Informations de copyright

© 2024 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

Références

Adams, M. N., Ramachandran, R., Yau, M. K., Suen, J. Y., Fairlie, D. P., Hollenberg, M. D., & Hooper, J. D. (2011). Structure, function and pathophysiology of protease activated receptors. Pharmacology & Therapeutics, 130, 248–282. https://doi.org/10.1016/j.pharmthera.2011.01.003
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., Al‐Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180, S23–S144. https://doi.org/10.1111/bph.16177
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181
Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., Conner, A. C., … Zhu, M. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180, S145–S222. https://doi.org/10.1111/bph.16181
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., … Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175, 407–411. https://doi.org/10.1111/bph.14112
Bohm, S. K., Kong, W., Bromme, D., Smeekens, S. P., Anderson, D. C., Connolly, A., Kahn, M., Nelken, N. A., Coughlin, S. R., Payan, D. G., & Bunnett, N. W. (1996). Molecular cloning, expression and potential functions of the human proteinase‐activated receptor‐2. The Biochemical Journal, 314(Pt 3), 1009–1016. https://doi.org/10.1042/bj3141009
Borgstrom, B., Dahlqvist, A., Lundh, G., & Sjovall, J. (1957). Studies of intestinal digestion and absorption in the human. The Journal of Clinical Investigation, 36, 1521–1536. https://doi.org/10.1172/JCI103549
Buresi, M. C., Schleihauf, E., Vergnolle, N., Buret, A., Wallace, J. L., Hollenberg, M. D., & MacNaughton, W. K. (2001). Protease‐activated receptor‐1 stimulates Ca2+‐dependent Cl− secretion in human intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 281, G323–G332. https://doi.org/10.1152/ajpgi.2001.281.2.G323
Caminero, A., McCarville, J. L., Galipeau, H. J., Deraison, C., Bernier, S. P., Constante, M., Rolland, C., Meisel, M., Murray, J. A., Yu, X. B., Alaedini, A., Coombes, B. K., Bercik, P., Southward, C. M., Ruf, W., Jabri, B., Chirdo, F. G., Casqueiro, J., Surette, M. G., … Verdu, E. F. (2019). Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease‐activated receptor‐2. Nature Communications, 10, 1198. https://doi.org/10.1038/s41467-019-09037-9
Canivet, C., Gourgou‐Bourgade, S., Napoleon, B., Palazzo, L., Flori, N., Guibert, P., Piessen, G., Farges‐Bancel, D., Seitz, J. F., Assenat, E., Vendrely, V., Truant, S., Vanbiervliet, G., Berthelemy, P., Garcia, S., Gomez‐Brouchet, A., Buscail, L., Bournet, B., & Bacap Consortium. (2018). A prospective clinical and biological database for pancreatic adenocarcinoma: The BACAP cohort. BMC Cancer, 18, 986. https://doi.org/10.1186/s12885-018-4906-4
Cenac, N., Coelho, A. M., Nguyen, C., Compton, S., Andrade‐Gordon, P., MacNaughton, W. K., Wallace, J. L., Hollenberg, M. D., Bunnett, N. W., Garcia‐Villar, R., Bueno, L., & Vergnolle, N. (2002). Induction of intestinal inflammation in mouse by activation of proteinase‐activated receptor‐2. The American Journal of Pathology, 161, 1903–1915. https://doi.org/10.1016/S0002-9440(10)64466-5
Chin, A. C., Vergnolle, N., MacNaughton, W. K., Wallace, J. L., Hollenberg, M. D., & Buret, A. G. (2003). Proteinase‐activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proceedings of the National Academy of Sciences of the United States of America, 100, 11104–11109. https://doi.org/10.1073/pnas.1831452100
Cuffe, J. E., Bertog, M., Velazquez‐Rocha, S., Dery, O., Bunnett, N., & Korbmacher, C. (2002). Basolateral PAR‐2 receptors mediate KCl secretion and inhibition of Na+ absorption in the mouse distal colon. The Journal of Physiology, 539, 209–222. https://doi.org/10.1113/jphysiol.2001.013159
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179(15), 3907–3913. https://doi.org/10.1111/bph.15868
D'Andrea, M. R., Derian, C. K., Leturcq, D., Baker, S. M., Brunmark, A., Ling, P., Darrow, A. L., Santulli, R. J., Brass, L. F., & Andrade‐Gordon, P. (1998). Characterization of protease‐activated receptor‐2 immunoreactivity in normal human tissues. The Journal of Histochemistry and Cytochemistry, 46, 157–164. https://doi.org/10.1177/002215549804600204
Darmoul, D., Gratio, V., Devaud, H., Lehy, T., & Laburthe, M. (2003). Aberrant expression and activation of the thrombin receptor protease‐activated receptor‐1 induces cell proliferation and motility in human colon cancer cells. The American Journal of Pathology, 162, 1503–1513. https://doi.org/10.1016/S0002-9440(10)64283-6
Darmoul, D., Gratio, V., Devaud, H., Peiretti, F., & Laburthe, M. (2004). Activation of proteinase‐activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Molecular Cancer Research, 2, 514–522. https://doi.org/10.1158/1541-7786.514.2.9
De Bruyn, M., Ceuleers, H., Hanning, N., Berg, M., De Man, J. G., Hulpiau, P., Hermans, C., Stenman, U. H., Koistinen, H., Lambeir, A. M., De Winter, B. Y., & De Meester, I. (2021). Proteolytic cleavage of bioactive peptides and protease‐activated receptors in acute and post‐colitis. International Journal of Molecular Sciences, 22, 10711. https://doi.org/10.3390/ijms221910711
Dulon, S., Cande, C., Bunnett, N. W., Hollenberg, M. D., Chignard, M., & Pidard, D. (2003). Proteinase‐activated receptor‐2 and human lung epithelial cells: Disarming by neutrophil serine proteinases. American Journal of Respiratory Cell and Molecular Biology, 28, 339–346. https://doi.org/10.1165/rcmb.4908
Goldberg, D. M., Campbell, R., & Roy, A. D. (1968). Binding of trypsin and chymotrypsin by human intestinal mucosa. Biochimica et Biophysica Acta, 167, 613–615. https://doi.org/10.1016/0005-2744(68)90053-3
Goldberg, D. M., Campbell, R., & Roy, A. D. (1969). Fate of trypsin and chymotrypsin in the human small intestine. Gut, 10, 477–483.
Hollenberg, M. D., Mihara, K., Polley, D., Suen, J. Y., Han, A., Fairlie, D. P., & Ramachandran, R. (2014). Biased signalling and proteinase‐activated receptors (PARs): Targeting inflammatory disease. British Journal of Pharmacology, 171, 1180–1194. https://doi.org/10.1111/bph.12544
Holzhausen, M., Spolidorio, L. C., Ellen, R. P., Jobin, M. C., Steinhoff, M., Andrade‐Gordon, P., & Vergnolle, N. (2006). Protease‐activated receptor‐2 activation: A major role in the pathogenesis of Porphyromonas gingivalis infection. The American Journal of Pathology, 168, 1189–1199. https://doi.org/10.2353/ajpath.2006.050658
Iablokov, V., Hirota, C. L., Peplowski, M. A., Ramachandran, R., Mihara, K., Hollenberg, M. D., & MacNaughton, W. K. (2014). Proteinase‐activated receptor 2 (PAR2) decreases apoptosis in colonic epithelial cells. The Journal of Biological Chemistry, 289, 34366–34377. https://doi.org/10.1074/jbc.M114.610485
Kaiserman, D., Zhao, P., Rowe, C. L., Leong, A., Barlow, N., Joeckel, L. T., Hitchen, C., Stewart, S. E., Hollenberg, M. D., Bunnett, N., Suhrbier, A., & Bird, P. I. (2022). Granzyme K initiates IL‐6 and IL‐8 release from epithelial cells by activating protease‐activated receptor 2. PLoS ONE, 17, e0270584. https://doi.org/10.1371/journal.pone.0270584
Kawabata, A., Saifeddine, M., Al‐Ani, B., Leblond, L., & Hollenberg, M. D. (1999). Evaluation of proteinase‐activated receptor‐1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: Activation of PAR2 by PAR1‐targeted ligands. The Journal of Pharmacology and Experimental Therapeutics, 288, 358–370.
Kong, W., McConalogue, K., Khitin, L. M., Hollenberg, M. D., Payan, D. G., Bohm, S. K., & Bunnett, N. W. (1997). Luminal trypsin may regulate enterocytes through proteinase‐activated receptor 2. Proceedings of the National Academy of Sciences of the United States of America, 94, 8884–8889. https://doi.org/10.1073/pnas.94.16.8884
Lau, C., Lytle, C., Straus, D. S., & DeFea, K. A. (2011). Apical and basolateral pools of proteinase‐activated receptor‐2 direct distinct signaling events in the intestinal epithelium. American Journal of Physiology. Cell Physiology, 300, C113–C123. https://doi.org/10.1152/ajpcell.00162.2010
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177, 3611–3616. https://doi.org/10.1111/bph.15178
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408. https://doi.org/10.1006/meth.2001.1262
Matsuwaki, Y., Wada, K., White, T. A., Benson, L. M., Charlesworth, M. C., Checkel, J. L., Inoue, Y., Hotta, K., Ponikau, J. U., Lawrence, C. B., & Kita, H. (2009). Recognition of fungal protease activities induces cellular activation and eosinophil‐derived neurotoxin release in human eosinophils. Journal of Immunology, 183, 6708–6716. https://doi.org/10.4049/jimmunol.0901220
Mihara, K., Ramachandran, R., Renaux, B., Saifeddine, M., & Hollenberg, M. D. (2013). Neutrophil elastase and proteinase‐3 trigger G protein‐biased signaling through proteinase‐activated receptor‐1 (PAR1). The Journal of Biological Chemistry, 288, 32979–32990. https://doi.org/10.1074/jbc.M113.483123
Mihara, K., Ramachandran, R., Saifeddine, M., Hansen, K. K., Renaux, B., Polley, D., Gibson, S., Vanderboor, C., & Hollenberg, M. D. (2016). Thrombin‐mediated direct activation of proteinase‐activated receptor‐2: Another target for thrombin signaling. Molecular Pharmacology, 89, 606–614. https://doi.org/10.1124/mol.115.102723
Molino, M., Blanchard, N., Belmonte, E., Tarver, A. P., Abrams, C., Hoxie, J. A., Cerletti, C., & Brass, L. F. (1995). Proteolysis of the human platelet and endothelial cell thrombin receptor by neutrophil‐derived cathepsin G. The Journal of Biological Chemistry, 270, 11168–11175. https://doi.org/10.1074/jbc.270.19.11168
Motta, J. P., Denadai‐Souza, A., Sagnat, D., Guiraud, L., Edir, A., Bonnart, C., Sebbag, M., Rousset, P., Lapeyre, A., Seguy, C., Mathurine‐Thomas, N., Galipeau, H. J., Bonnet, D., Alric, L., Buret, A. G., Wallace, J. L., Dufour, A., Verdu, E. F., Hollenberg, M. D., … Vergnolle, N. (2019). Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nature Communications, 10, 3224. https://doi.org/10.1038/s41467-019-11140-w
Motta, J. P., Deraison, C., Le Grand, S., Le Grand, B., & Vergnolle, N. (2021). PAR‐1 antagonism to promote gut mucosa healing in Crohn's disease patients: A new avenue for CVT120165. Inflammatory Bowel Diseases, 27, S33–S37. https://doi.org/10.1093/ibd/izab244
Motta, J. P., Palese, S., Giorgio, C., Chapman, K., Denadai‐Souza, A., Rousset, P., Sagnat, D., Guiraud, L., Edir, A., Seguy, C., Alric, L., Bonnet, D., Bournet, B., Buscail, L., Gilletta, C., Buret, A. G., Wallace, J. L., Hollenberg, M. D., Oswald, E., … Vergnolle, N. (2021). Increased mucosal thrombin is associated with Crohn's disease and causes inflammatory damage through protease‐activated receptors activation. Journal of Crohn's & Colitis, 15, 787–799. https://doi.org/10.1093/ecco-jcc/jjaa229
Nasri, I., Bonnet, D., Zwarycz, B., d'Aldebert, E., Khou, S., Mezghani‐Jarraya, R., Quaranta, M., Rolland, C., Bonnart, C., Mas, E., Ferrand, A., Cenac, N., Magness, S., Van Landeghem, L., Vergnolle, N., & Racaud‐Sultan, C. (2016). PAR2‐dependent activation of GSK3β regulates the survival of colon stem/progenitor cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 311, G221–G236. https://doi.org/10.1152/ajpgi.00328.2015
Nguyen, C., Coelho, A. M., Grady, E., Compton, S. J., Wallace, J. L., Hollenberg, M. D., Cenac, N., Garcia‐Villar, R., Bueno, L., Steinhoff, M., Bunnett, N. W., & Vergnolle, N. (2003). Colitis induced by proteinase‐activated receptor‐2 agonists is mediated by a neurogenic mechanism. Canadian Journal of Physiology and Pharmacology, 81, 920–927. https://doi.org/10.1139/y03-080
Nguyen, H. D., Aljamaei, H. M., & Stadnyk, A. W. (2021). The production and function of endogenous interleukin‐10 in intestinal epithelial cells and gut homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 12, 1343–1352. https://doi.org/10.1016/j.jcmgh.2021.07.005
Nystedt, S., Emilsson, K., Larsson, A. K., Strombeck, B., & Sundelin, J. (1995). Molecular cloning and functional expression of the gene encoding the human proteinase‐activated receptor 2. European Journal of Biochemistry, 232, 84–89. https://doi.org/10.1111/j.1432-1033.1995.tb20784.x
Nystedt, S., Emilsson, K., Wahlestedt, C., & Sundelin, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proceedings of the National Academy of Sciences of the United States of America, 91, 9208–9212. https://doi.org/10.1073/pnas.91.20.9208
Nystedt, S., Larsson, A. K., Aberg, H., & Sundelin, J. (1995). The mouse proteinase‐activated receptor‐2 cDNA and gene. Molecular cloning and functional expression. The Journal of Biological Chemistry, 270, 5950–5955.
Oikonomopoulou, K., Hansen, K. K., Saifeddine, M., Tea, I., Blaber, M., Blaber, S. I., Scarisbrick, I., Andrade‐Gordon, P., Cottrell, G. S., Bunnett, N. W., Diamandis, E. P., & Hollenberg, M. D. (2006). Proteinase‐activated receptors, targets for kallikrein signaling. The Journal of Biological Chemistry, 281, 32095–32112. https://doi.org/10.1074/jbc.M513138200
Pandol, S. J. (2010). The exocrine pancreas. Morgan & Claypool Life Sciences. https://doi.org/10.4199/C00026ED1V01Y201102ISP014
Parry, M. A., Myles, T., Tschopp, J., & Stone, S. R. (1996). Cleavage of the thrombin receptor: Identification of potential activators and inactivators. The Biochemical Journal, 320(Pt 1), 335–341. https://doi.org/10.1042/bj3200335
Peach, C. J., Edgington‐Mitchell, L. E., Bunnett, N. W., & Schmidt, B. L. (2023). Protease‐activated receptors in health and disease. Physiological Reviews, 103, 717–785. https://doi.org/10.1152/physrev.00044.2021
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410
Ramachandran, R., Altier, C., Oikonomopoulou, K., & Hollenberg, M. D. (2016). Proteinases, their extracellular targets, and inflammatory signaling. Pharmacological Reviews, 68, 1110–1142. https://doi.org/10.1124/pr.115.010991
Ramachandran, R., Mihara, K., Chung, H., Renaux, B., Lau, C. S., Muruve, D. A., DeFea, K. A., Bouvier, M., & Hollenberg, M. D. (2011). Neutrophil elastase acts as a biased agonist for proteinase‐activated receptor‐2 (PAR2). The Journal of Biological Chemistry, 286, 24638–24648. https://doi.org/10.1074/jbc.M110.201988
Ramachandran, R., Mihara, K., Mathur, M., Rochdi, M. D., Bouvier, M., Defea, K., & Hollenberg, M. D. (2009). Agonist‐biased signaling via proteinase activated receptor‐2: Differential activation of calcium and mitogen‐activated protein kinase pathways. Molecular Pharmacology, 76, 791–801. https://doi.org/10.1124/mol.109.055509
Ramachandran, R., Noorbakhsh, F., Defea, K., & Hollenberg, M. D. (2012). Targeting proteinase‐activated receptors: Therapeutic potential and challenges. Nature Reviews. Drug Discovery, 11, 69–86. https://doi.org/10.1038/nrd3615
Reinhardt, C., Bergentall, M., Greiner, T. U., Schaffner, F., Ostergren‐Lunden, G., Petersen, L. C., Ruf, W., & Backhed, F. (2012). Tissue factor and PAR1 promote microbiota‐induced intestinal vascular remodelling. Nature, 483, 627–631. https://doi.org/10.1038/nature10893
Remtulla, M. A., Durie, P. R., & Goldberg, D. M. (1986). Stool chymotrypsin activity measured by a spectrophotometric procedure to identify pancreatic disease in infants. Clinical Biochemistry, 19, 341–347. https://doi.org/10.1016/S0009-9120(86)80007-8
Renesto, P., Si‐Tahar, M., Moniatte, M., Balloy, V., Van Dorsselaer, A., Pidard, D., & Chignard, M. (1997). Specific inhibition of thrombin‐induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: Evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood, 89, 1944–1953. https://doi.org/10.1182/blood.V89.6.1944
Roka, R., Demaude, J., Cenac, N., Ferrier, L., Salvador‐Cartier, C., Garcia‐Villar, R., Fioramonti, J., & Bueno, L. (2007). Colonic luminal proteases activate colonocyte proteinase‐activated receptor‐2 and regulate paracellular permeability in mice. Neurogastroenterology and Motility, 19, 57–65. https://doi.org/10.1111/j.1365-2982.2006.00851.x
Schechter, N. M., Brass, L. F., Lavker, R. M., & Jensen, P. J. (1998). Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. Journal of Cellular Physiology, 176, 365–373. https://doi.org/10.1002/(SICI)1097‐4652(199808)176:2<365::AID‐JCP15>3.0.CO;2‐2
Sebert, M., Denadai‐Souza, A., Quaranta, M., Racaud‐Sultan, C., Chabot, S., Lluel, P., Monjotin, N., Alric, L., Portier, G., Kirzin, S., Bonnet, D., Ferrand, A., & Vergnolle, N. (2018). Thrombin modifies growth, proliferation and apoptosis of human colon organoids: A protease‐activated receptor 1‐ and protease‐activated receptor 4‐dependent mechanism. British Journal of Pharmacology, 175, 3656–3668. https://doi.org/10.1111/bph.14430
Sebert, M., Sola‐Tapias, N., Mas, E., Barreau, F., & Ferrand, A. (2019). Protease‐activated receptors in the intestine: Focus on inflammation and cancer. Front Endocrinol (Lausanne), 10, 717. https://doi.org/10.3389/fendo.2019.00717
Singer, M. V., & Niebergall‐Roth, E. (2009). Secretion from acinar cells of the exocrine pancreas: Role of enteropancreatic reflexes and cholecystokinin. Cell Biology International, 33, 1–9. https://doi.org/10.1016/j.cellbi.2008.09.008
Smith, J. S., Ediss, I., Mullinger, M. A., & Bogoch, A. (1971). Fecal chymotrypsin and trypsin determinations. Canadian Medical Association Journal, 104, 691‐4 passim.
Stefansson, K., Brattsand, M., Roosterman, D., Kempkes, C., Bocheva, G., Steinhoff, M., & Egelrud, T. (2008). Activation of proteinase‐activated receptor‐2 by human kallikrein‐related peptidases. The Journal of Investigative Dermatology, 128, 18–25. https://doi.org/10.1038/sj.jid.5700965
Swystun, V. A., Renaux, B., Moreau, F., Wen, S., Peplowski, M. A., Hollenberg, M. D., & MacNaughton, W. K. (2009). Serine proteases decrease intestinal epithelial ion permeability by activation of protein kinase Cζ. American Journal of Physiology. Gastrointestinal and Liver Physiology, 297, G60–G70. https://doi.org/10.1152/ajpgi.00096.2009
Tam, S. W., Fenton, J. W. 2nd, & Detwiler, T. C. (1980). Platelet thrombin receptors. Binding of alpha‐thrombin is coupled to signal generation by a chymotrypsin‐sensitive mechanism. The Journal of Biological Chemistry, 255, 6626–6632. https://doi.org/10.1016/S0021‐9258(18)43615‐0
Tanaka, Y., Sekiguchi, F., Hong, H., & Kawabata, A. (2008). PAR2 triggers IL‐8 release via MEK/ERK and PI3‐kinase/Akt pathways in GI epithelial cells. Biochemical and Biophysical Research Communications, 377, 622–626. https://doi.org/10.1016/j.bbrc.2008.10.018
Targos, B., Baranska, J., & Pomorski, P. (2005). Store‐operated calcium entry in physiology and pathology of mammalian cells. Acta Biochimica Polonica, 52, 397–409. https://doi.org/10.18388/abp.2005_3452
van der Merwe, J. Q., Hollenberg, M. D., & MacNaughton, W. K. (2008). EGF receptor transactivation and MAP kinase mediate proteinase‐activated receptor‐2‐induced chloride secretion in intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 294, G441–G451. https://doi.org/10.1152/ajpgi.00303.2007
Vergnolle, N. (2005). Clinical relevance of proteinase activated receptors (pars) in the gut. Gut, 54, 867–874. https://doi.org/10.1136/gut.2004.048876
Vergnolle, N. (2016). Protease inhibition as new therapeutic strategy for GI diseases. Gut, 65, 1215–1224. https://doi.org/10.1136/gutjnl-2015-309147
Wang, H., Ubl, J. J., Stricker, R., & Reiser, G. (2002). Thrombin (PAR‐1)‐induced proliferation in astrocytes via MAPK involves multiple signaling pathways. American Journal of Physiology. Cell Physiology, 283, C1351–C1364. https://doi.org/10.1152/ajpcell.00001.2002
Zhang, X., Xin, P., Yoast, R. E., Emrich, S. M., Johnson, M. T., Pathak, T., Benson, J. C., Azimi, I., Gill, D. L., Monteith, G. R., & Trebak, M. (2020). Distinct pharmacological profiles of ORAI1, ORAI2, and ORAI3 channels. Cell Calcium, 91, 102281. https://doi.org/10.1016/j.ceca.2020.102281

Auteurs

Simon Guignard (S)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Mahmoud Saifeddine (M)

Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.
Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.

Koichiro Mihara (K)

Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.
Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.

Majid Motahhary (M)

Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.
Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.

Magali Savignac (M)

Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-Centre National de la Recherche Scientifique UMR5051, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Laura Guiraud (L)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

David Sagnat (D)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Mireille Sebbag (M)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Sokchea Khou (S)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Corinne Rolland (C)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Anissa Edir (A)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Barbara Bournet (B)

Department of Gastroenterology, Toulouse University Hospital, Toulouse, France.

Louis Buscail (L)

Department of Gastroenterology, Toulouse University Hospital, Toulouse, France.

Etienne Buscail (E)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Department of Digestive Surgery, Toulouse University Hospital, Toulouse, France.

Laurent Alric (L)

Department of Internal Medicine and Digestive Diseases, Rangueil, Toulouse III University Hospital, University of Toulouse, Toulouse, France.

Caroline Camare (C)

Department of Clinical Biochemistry, Toulouse University Hospital, Toulouse, France.
University of Toulouse, UMR1297, INSERM/Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Mouna Ambli (M)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Nathalie Vergnolle (N)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.

Morley D Hollenberg (MD)

Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.
Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.

Céline Deraison (C)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Chrystelle Bonnart (C)

IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.

Classifications MeSH