The genomic evolutionary dynamics and global circulation patterns of respiratory syncytial virus.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 Apr 2024
10 Apr 2024
Historique:
received:
12
04
2023
accepted:
14
03
2024
medline:
11
4
2024
pubmed:
11
4
2024
entrez:
10
4
2024
Statut:
epublish
Résumé
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infection in young children and the second leading cause of infant death worldwide. While global circulation has been extensively studied for respiratory viruses such as seasonal influenza, and more recently also in great detail for SARS-CoV-2, a lack of global multi-annual sampling of complete RSV genomes limits our understanding of RSV molecular epidemiology. Here, we capitalise on the genomic surveillance by the INFORM-RSV study and apply phylodynamic approaches to uncover how selection and neutral epidemiological processes shape RSV diversity. Using complete viral genome sequences, we show similar patterns of site-specific diversifying selection among RSVA and RSVB and recover the imprint of non-neutral epidemic processes on their genealogies. Using a phylogeographic approach, we provide evidence for air travel governing the global patterns of RSVA and RSVB spread, which results in a considerable degree of phylogenetic mixing across countries. Our findings highlight the potential of systematic global RSV genomic surveillance for transforming our understanding of global RSV spread.
Identifiants
pubmed: 38600104
doi: 10.1038/s41467-024-47118-6
pii: 10.1038/s41467-024-47118-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3083Investigateurs
Elena Priante
(E)
Kseniya Komissarova
(K)
Ki Wook Yun
(KW)
Pascale Clement
(P)
Monica Bauck
(M)
Atul Gupta
(A)
Ushma Wadia
(U)
Irene Rivero-Calle
(I)
Magalia Lumertz
(M)
Koichi Hasimoto
(K)
Shabir A Madhi
(SA)
Informations de copyright
© 2024. The Author(s).
Références
Langedijk, A. C. & Bont, L. J. Respiratory syncytial virus infection and novel interventions. Nat. Rev. Microbiol., https://doi.org/10.1038/s41579-023-00919-w (2023).
Langedijk, A. C. et al. Global molecular diversity of RSV - the “INFORM RSV” study. BMC Infect. Dis. 20, 450 (2020).
pubmed: 32591017
pmcid: 7316634
doi: 10.1186/s12879-020-05175-4
Tan, L. et al. Genetic variability among complete human respiratory syncytial virus subgroup A genomes: bridging molecular evolutionary dynamics and epidemiology. PLoS One 7, e51439 (2012).
pubmed: 23236501
pmcid: 3517519
doi: 10.1371/journal.pone.0051439
Bedford, T. et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217–220 (2015).
pubmed: 26053121
pmcid: 4499780
doi: 10.1038/nature14460
Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, e1003932 (2014).
pubmed: 24586153
pmcid: 3930559
doi: 10.1371/journal.ppat.1003932
Lemey, P. et al. Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature 595, 713–717 (2021).
pubmed: 34192736
pmcid: 8324533
doi: 10.1038/s41586-021-03754-2
Martin, D. P. et al. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184, 5189–5200 e5187 (2021).
pubmed: 34537136
pmcid: 8421097
doi: 10.1016/j.cell.2021.09.003
Russell, C. A. et al. The global circulation of seasonal influenza A (H3N2) viruses. Science 320, 340–346 (2008).
pubmed: 18420927
doi: 10.1126/science.1154137
Otieno, J. R. et al. Molecular evolutionary dynamics of respiratory syncytial virus group A in recurrent epidemics in coastal Kenya. J. Virol. 90, 4990–5002 (2016).
pubmed: 26937038
pmcid: 4859726
doi: 10.1128/JVI.03105-15
Otieno, J. R. et al. A49 Molecular evolutionary dynamics of respiratory syncytial virus group A in recurrent epidemics in coastal Kenya. Virus Evol. 3, https://doi.org/10.1093/ve/vew036.048 (2017).
Otieno, J. R. et al. Spread and evolution of respiratory syncytial virus A genotype ON1, coastal Kenya, 2010-2015. Emerg. Infect. Dis. 23, 264–271 (2017).
pubmed: 28098528
pmcid: 5324789
doi: 10.3201/eid2302.161149
Otieno, J. R. et al. Whole genome analysis of local Kenyan and global sequences unravels the epidemiological and molecular evolutionary dynamics of RSV genotype ON1 strains. Virus Evol. 4, vey027 (2018).
pubmed: 30271623
pmcid: 6153471
doi: 10.1093/ve/vey027
Agoti, C. N. et al. Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis. Virus Evol. 3, vex006 (2017).
pubmed: 28458916
pmcid: 5399923
Agoti, C. N. et al. Local evolutionary patterns of human respiratory syncytial virus derived from whole-genome sequencing. J. Virol. 89, 3444–3454 (2015).
pubmed: 25609811
pmcid: 4403408
doi: 10.1128/JVI.03391-14
Agoti, C. N. et al. Successive respiratory syncytial virus epidemics in local populations arise from multiple variant introductions, providing insights into virus persistence. J. Virol. 89, 11630–11642 (2015).
pubmed: 26355091
pmcid: 4645665
doi: 10.1128/JVI.01972-15
Trento, A. et al. Major changes in the G protein of human respiratory syncytial virus isolates introduced by a duplication of 60 nucleotides. J. Gen. Virol. 84, 3115–3120 (2003).
pubmed: 14573817
doi: 10.1099/vir.0.19357-0
Hotard, A. L., Laikhter, E., Brooks, K., Hartert, T. V. & Moore, M. L. Functional analysis of the 60-nucleotide duplication in the respiratory syncytial virus buenos aires strain attachment glycoprotein. J. Virol. 89, 8258–8266 (2015).
pubmed: 26018171
pmcid: 4524256
doi: 10.1128/JVI.01045-15
Tan, L. et al. The comparative genomics of human respiratory syncytial virus subgroups A and B: genetic variability and molecular evolutionary dynamics. J. Virol. 87, 8213–8226 (2013).
pubmed: 23698290
pmcid: 3700225
doi: 10.1128/JVI.03278-12
Drummond, A. J. & Suchard, M. A. Fully Bayesian tests of neutrality using genealogical summary statistics. BMC Genet. 9, 68 (2008).
pubmed: 18976476
pmcid: 2645432
doi: 10.1186/1471-2156-9-68
Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).
pubmed: 19779555
pmcid: 2740835
doi: 10.1371/journal.pcbi.1000520
Findlater, A. & Bogoch, I. I. Human mobility and the global spread of infectious diseases: a focus on air travel. Trends Parasitol. 34, 772–783 (2018).
pubmed: 30049602
pmcid: 7106444
doi: 10.1016/j.pt.2018.07.004
Luna, L. K., Panning, M., Grywna, K., Pfefferle, S. & Drosten, C. Spectrum of viruses and atypical bacteria in intercontinental air travelers with symptoms of acute respiratory infection. J. Infect. Dis. 195, 675–679 (2007).
pubmed: 17262708
doi: 10.1086/511432
Jennings, L. C. et al. Respiratory viruses in airline travellers with influenza symptoms: results of an airport screening study. J. Clin. Virol. 67, 8–13 (2015).
pubmed: 25959149
pmcid: 7106445
doi: 10.1016/j.jcv.2015.03.011
Choi, E. M. et al. In flight transmission of severe acute respiratory SARS-CoV-2. Emerg. Infect. Dis. 26, 2713–2716 (2020).
pubmed: 32946370
pmcid: 7588512
doi: 10.3201/eid2611.203254
Swadi, T. et al. Genomic evidence of in-flight transmission of SARS-CoV-2 despite predeparture testing. Emerg. Infect. Dis. 27, 687–693 (2021).
pubmed: 33400642
pmcid: 7920679
doi: 10.3201/eid2703.204714
Ebola plane travel scare has officials on edge, < https://www.cbsnews.com/news/ebola-plane-travel-scare-has-officials-on-edge/ > (2014).
CDC launches Traveler-based SARS-CoV-2 Genomic Surveillance Program, < https://www.cdc.gov/amd/whats-new/airport-genomic-surveillance.html >.
Venter, M., Madhi, S. A., Tiemessen, C. T. & Schoub, B. D. Genetic diversity and molecular epidemiology of respiratory syncytial virus over four consecutive seasons in South Africa: identification of new subgroup A and B genotypes. J. Gen. Virol. 82, 2117–2124 (2001).
pubmed: 11514720
doi: 10.1099/0022-1317-82-9-2117
Pond, S. L. & Frost, S. D. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).
doi: 10.1093/molbev/msi105
Ramaekers, K. et al. Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol. 6, veaa052, https://doi.org/10.1093/ve/ (2020).
doi: 10.1093/ve/
pubmed: 33072402
pmcid: 7552823
Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).
pubmed: 32669681
pmcid: 7610519
doi: 10.1038/s41564-020-0770-5
Guvenel, A. et al. Epitope-specific airway-resident CD4 + T cell dynamics during experimental human RSV infection. J. Clin. Investig. 130, 523–538 (2020).
pubmed: 31815739
doi: 10.1172/JCI131696
Tabor, D. E. et al. Global molecular epidemiology of respiratory syncytial virus from the 2017-2018 INFORM-RSV study. J. Clin. Microbiol. 59, https://doi.org/10.1128/JCM.01828-20 (2020).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).
pubmed: 25095880
pmcid: 4221126
doi: 10.1093/bioinformatics/btu531
Martin, D. P. et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 7, veaa087 (2021).
pubmed: 33936774
doi: 10.1093/ve/veaa087
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
pubmed: 20525638
doi: 10.1093/sysbio/syq010
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
pubmed: 25371430
doi: 10.1093/molbev/msu300
Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen).Virus Evol. 2, vew007 (2016).
pubmed: 27774300
pmcid: 4989882
doi: 10.1093/ve/vew007
Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R. News 6, 7–11 (2006).
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 587–589 (2017).
pubmed: 28481363
pmcid: 5453245
doi: 10.1038/nmeth.4285
Perez, A. B. et al. Increasing importance of European lineages in seeding the hepatitis C virus subtype 1a epidemic in Spain. Euro. Surveill. 24, https://doi.org/10.2807/1560-7917.ES.2019.24.9.1800227 (2019).
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
pubmed: 29942656
pmcid: 6007674
doi: 10.1093/ve/vey016
Baele, G., Ayres, D. L., Rambaut, A., Suchard, M. A. & Lemey, P. High-Performance Computing in Bayesian phylogenetics and phylodynamics using BEAGLE. Methods Mol. Biol. 1910, 691–722 (2019).
pubmed: 31278682
doi: 10.1007/978-1-4939-9074-0_23
Tavaré, S. Some Mathematical Questions in Biology: DNA Sequence Analysis. American Mathematical Society (1986).
Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).
pubmed: 7932792
doi: 10.1007/BF00160154
Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
pubmed: 16683862
pmcid: 1395354
doi: 10.1371/journal.pbio.0040088
Gill, M. S. et al. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).
pubmed: 23180580
doi: 10.1093/molbev/mss265
Dataset Publishing Language Countries, < https://developers.google.com/public-data/docs/canonical/countries_csv >.
FigTree, < http://tree.bio.ed.ac.uk/software/figtree/ >.
International Air Transport Association (IATA) < https://www.iata.org/en/ > (2023).
World Population Prospects < https://population.un.org/wpp/Download/Standard/Population >.
Bielejec, F., Lemey, P., Baele, G., Rambaut, A. & Suchard, M. A. Inferring heterogeneous evolutionary processes through time: from sequence substitution to phylogeography. Syst Biol 63, 493–504 (2014).
pubmed: 24627184
pmcid: 4055869
doi: 10.1093/sysbio/syu015
Lemey, P., Minin, V. N., Bielejec, F., Kosakovsky Pond, S. L. & Suchard, M. A. A counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selection. Bioinformatics 28, 3248–3256 (2012).
pubmed: 23064000
pmcid: 3579240
doi: 10.1093/bioinformatics/bts580
Bedford, T., Rambaut, A. & Pascual, M. Canalization of the evolutionary trajectory of the human influenza virus. BMC Biol. 10, 38 (2012).
pubmed: 22546494
pmcid: 3373370
doi: 10.1186/1741-7007-10-38
Lemey, P. et al. Synonymous substitution rates predict HIV disease progression as a result of underlying replication dynamics. PLoS Comput. Biol. 3, e29 (2007).
pubmed: 17305421
pmcid: 1797821
doi: 10.1371/journal.pcbi.0030029