PALB2-mutated human mammary cells display a broad spectrum of morphological and functional abnormalities induced by increased TGFβ signaling.
PALB2-edited cell lines
Hereditary breast cancer susceptibility modeling
KRT14-positive cells
TGFβ response
Three-dimensional cell growth and migration
Transcriptome profiling
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
10 Apr 2024
10 Apr 2024
Historique:
received:
02
06
2023
accepted:
19
02
2024
revised:
16
02
2024
medline:
10
4
2024
pubmed:
10
4
2024
entrez:
10
4
2024
Statut:
epublish
Résumé
Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFβ signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.
Identifiants
pubmed: 38597967
doi: 10.1007/s00018-024-05183-6
pii: 10.1007/s00018-024-05183-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
173Subventions
Organisme : Academy of Finland
ID : 314183
Organisme : Academy of Finland
ID : 314183
Organisme : Academy of Finland
ID : 318337
Organisme : Academy of Finland
ID : 318337
Informations de copyright
© 2024. The Author(s).
Références
Slavin TP, Maxwell KN, Lilyquist J et al (2017) The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 3:22–28. https://doi.org/10.1038/s41523-017-0024-8
doi: 10.1038/s41523-017-0024-8
pubmed: 28649662
pmcid: 5466608
Lee JEA, Li N, Rowley SM et al (2018) Molecular analysis of PALB2-associated breast cancers. J Pathol 245:53–60. https://doi.org/10.1002/path.5055
doi: 10.1002/path.5055
pubmed: 29431189
Yang X, Leslie G, Doroszuk A et al (2020) Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol 38:674–685. https://doi.org/10.1200/JCO.19.01907
doi: 10.1200/JCO.19.01907
pubmed: 31841383
Reid S, Schindler D, Hanenberg H et al (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39:162–164
doi: 10.1038/ng1947
pubmed: 17200671
Xia B, Dorsman JC, Ameziane N et al (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161
doi: 10.1038/ng1942
pubmed: 17200672
Zhang F, Ma J, Wu J et al (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19:524–529. https://doi.org/10.1016/j.cub.2009.02.018
doi: 10.1016/j.cub.2009.02.018
pubmed: 19268590
pmcid: 2750839
Ducy M, Sesma-Sanz L, Guitton-Sert L et al (2019) The tumor suppressor PALB2: inside out. Trends Biochem Sci 44:226–240
doi: 10.1016/j.tibs.2018.10.008
pubmed: 30638972
Gardini A, Baillat D, Cesaroni M, Shiekhattar R (2014) Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation. EMBO J 33:890–905. https://doi.org/10.1002/embj.201385567
doi: 10.1002/embj.201385567
pubmed: 24591564
pmcid: 4194113
Ma J, Cai H, Wu T et al (2012) PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function. Mol Cell Biol 32:1506–1517. https://doi.org/10.1128/MCB.06271-11
doi: 10.1128/MCB.06271-11
pubmed: 22331464
pmcid: 3318596
Nikkila J, Parplys AC, Pylkas K et al (2013) Heterozygous mutations in PALB2 cause DNA replication and damage response defects. Nat Commun 4:2578. https://doi.org/10.1038/ncomms3578
doi: 10.1038/ncomms3578
pubmed: 24153426
Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. https://doi.org/10.1016/j.ccr.2006.10.008
doi: 10.1016/j.ccr.2006.10.008
pubmed: 17157791
pmcid: 2730521
Soule HD, Maloney TM, Wolman SR et al (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086
pubmed: 1975513
Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143
doi: 10.1038/nprot.2013.143
pubmed: 24157548
pmcid: 3969860
Tervasmaki A, Mantere T, Eshraghi L et al (2019) Tumor suppressor MCPH1 regulates gene expression profiles related to malignant conversion and chromosomal assembly. Int J Cancer 145:2070–2081. https://doi.org/10.1002/ijc.32234
doi: 10.1002/ijc.32234
pubmed: 30809794
pmcid: 6767439
Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268
doi: 10.1016/S1046-2023(03)00032-X
pubmed: 12798140
Wang L, Brugge JS, Janes KA (2011) Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proc Natl Acad Sci U S A 108:803. https://doi.org/10.1073/pnas.1103423108
doi: 10.1073/pnas.1103423108
Single A, Beetham H, Telford BJ et al (2015) A comparison of real-time and endpoint cell viability assays for improved synthetic lethal drug validation. J Biomol Screen 20:1286–1293
doi: 10.1177/1087057115605765
pubmed: 26384394
Morgan RG, Chambers AC, Legge DN et al (2018) Optimized delivery of siRNA into 3D tumor spheroid cultures in situ. Sci Rep 2018 8:1–10. https://doi.org/10.1038/s41598-018-26253-3
doi: 10.1038/s41598-018-26253-3
Hall DMS, Brooks SA (2014) In vitro invasion assay using matrigel™: a reconstituted basement membrane preparation. Methods Mol Biol 1070:1–11. https://doi.org/10.1007/978-1-4614-8244-4_1
doi: 10.1007/978-1-4614-8244-4_1
pubmed: 24092428
Taglialatela A, Alvarez S, Leuzzi G et al (2017) Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol Cell 68:414–430
doi: 10.1016/j.molcel.2017.09.036
pubmed: 29053959
pmcid: 5720682
Erkko H, Xia B, Nikkila J et al (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319
doi: 10.1038/nature05609
pubmed: 17287723
Foulkes WD, Ghadirian P, Akbari MR et al (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French–Canadian women. Breast Cancer Res 9:R83
doi: 10.1186/bcr1828
pubmed: 18053174
pmcid: 2246183
Rantakari P, Nikkila J, Jokela H et al (2010) Inactivation of Palb2 gene leads to mesoderm differentiation defect and early embryonic lethality in mice. Hum Mol Genet 19:3021–3029. https://doi.org/10.1093/hmg/ddq207
doi: 10.1093/hmg/ddq207
pubmed: 20484223
Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. https://doi.org/10.1016/j.molcel.2010.09.019
doi: 10.1016/j.molcel.2010.09.019
pubmed: 20965415
pmcid: 2988877
Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18. https://doi.org/10.1038/nrm3719
doi: 10.1038/nrm3719
pubmed: 24326623
Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a026070
doi: 10.1101/cshperspect.a026070
pubmed: 27048304
pmcid: 4852800
Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9:10. https://doi.org/10.1038/nrc2716
doi: 10.1038/nrc2716
Helbling-Leclerc A, Garcin C, Rosselli F (2021) Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 28:1159–1173. https://doi.org/10.1038/s41418-021-00764-5
doi: 10.1038/s41418-021-00764-5
pubmed: 33723374
pmcid: 8026967
Liu Q, Lopez K, Murnane J et al (2019) Misrepair in context: TGFβ regulation of DNA repair. Front Oncol. https://doi.org/10.3389/FONC.2019.00799
doi: 10.3389/FONC.2019.00799
pubmed: 32257953
pmcid: 6933607
Barcellos-Hoff MH (2022) The radiobiology of TGFβ. Semin Cancer Biol 86:857–867. https://doi.org/10.1016/J.SEMCANCER.2022.02.001
doi: 10.1016/J.SEMCANCER.2022.02.001
pubmed: 35122974
Bouquet F, Pal A, Pilones KA et al (2011) TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-11-0544
doi: 10.1158/1078-0432.CCR-11-0544
pubmed: 22028490
pmcid: 3724539
Zhou J, Wang H, Fu F et al (2020) Spectrum of PALB2 germline mutations and characteristics of PALB2-related breast cancer: screening of 16,501 unselected patients with breast cancer and 5890 controls by next-generation sequencing. Cancer 126:3202–3208. https://doi.org/10.1002/cncr.32905
doi: 10.1002/cncr.32905
pubmed: 32339256
Antoniou AC, Foulkes WD, Tischkowitz M, Group PI (2015) Breast cancer risk in women with PALB2 mutations in different populations. Lancet Oncol 16:375. https://doi.org/10.1016/S1470-2045(15)00002-9
doi: 10.1016/S1470-2045(15)00002-9
Li A, Geyer FC, Blecua P et al (2019) Homologous recombination DNA repair defects in PALB2-associated breast cancers. NPJ Breast Cancer 5:23–29. https://doi.org/10.1038/s41523-019-0115-9
doi: 10.1038/s41523-019-0115-9
pubmed: 31428676
pmcid: 6687719
Staaf J, Glodzik D, Bosch A et al (2019) Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat Med 25:1526–1533. https://doi.org/10.1038/s41591-019-0582-4
doi: 10.1038/s41591-019-0582-4
pubmed: 31570822
pmcid: 6859071
Wark L, Novak D, Sabbaghian N et al (2013) Heterozygous mutations in the PALB2 hereditary breast cancer predisposition gene impact on the three-dimensional nuclear organization of patient-derived cell lines. Genes Chromosomes Cancer 52:480–494. https://doi.org/10.1002/GCC.22045
doi: 10.1002/GCC.22045
pubmed: 23341105
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R (2019) Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J. https://doi.org/10.15252/EMBJ.2018100852
doi: 10.15252/EMBJ.2018100852
pubmed: 31267556
pmcid: 6627238
Pereira EJ, Burns JS, Lee CY et al (2020) Sporadic activation of an oxidative stress-dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies. Sci Signal 13:eaba4200
doi: 10.1126/scisignal.aba4200
pubmed: 32291314
pmcid: 7315801
Roy R, Chun J, Powell SN (2011) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12:68–78. https://doi.org/10.1038/nrc3181
doi: 10.1038/nrc3181
pubmed: 22193408
pmcid: 4972490
Mahdi AH, Huo Y, Tan Y et al (2018) Evidence of intertissue differences in the DNA damage response and the pro-oncogenic role of NF-kappaB in mice with disengaged BRCA1-PALB2 interaction. Cancer Res 78:3969–3981. https://doi.org/10.1158/0008-5472.CAN-18-0388
doi: 10.1158/0008-5472.CAN-18-0388
pubmed: 29739757
pmcid: 6050088
Karaayvaz-Yildirim M, Silberman RE, Langenbucher A et al (2020) Aneuploidy and a deregulated DNA damage response suggest haploinsufficiency in breast tissues of BRCA2 mutation carriers. Sci Adv 6:eaay2611. https://doi.org/10.1126/sciadv.aay2611
doi: 10.1126/sciadv.aay2611
pubmed: 32064343
pmcid: 6989139
Obermeier K, Sachsenweger J, Friedl TW et al (2016) Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients. Oncogene 35:3796–3806. https://doi.org/10.1038/onc.2015.448
doi: 10.1038/onc.2015.448
pubmed: 26640152
Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9. https://doi.org/10.1038/ncb2897
doi: 10.1038/ncb2897
pubmed: 24366029
pmcid: 4354890
Wilhelm T, Olziersky AM, Harry D et al (2019) Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nat Commun 10:3585. https://doi.org/10.1038/s41467-019-11584-0
doi: 10.1038/s41467-019-11584-0
pubmed: 31395887
pmcid: 6687892
Heijink AM, Talens F, Jae LT et al (2019) BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat Commun 10:100. https://doi.org/10.1038/s41467-018-07927-y
doi: 10.1038/s41467-018-07927-y
pubmed: 30626869
pmcid: 6327059
Buisson R, Niraj J, Pauty J et al (2014) Breast cancer proteins PALB2 and BRCA2 stimulate polymerase eta in recombination-associated DNA synthesis at blocked replication forks. Cell Rep 6:553–564. https://doi.org/10.1016/j.celrep.2014.01.009
doi: 10.1016/j.celrep.2014.01.009
pubmed: 24485656
pmcid: 4162405
Murphy AK, Fitzgerald M, Ro T et al (2014) Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J Cell Biol 206:493–507. https://doi.org/10.1083/jcb.201404111
doi: 10.1083/jcb.201404111
pubmed: 25113031
pmcid: 4137056
Bleuyard JY, Fournier M, Nakato R et al (2017) MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A 114:7671–7676. https://doi.org/10.1073/pnas.1620208114
doi: 10.1073/pnas.1620208114
pubmed: 28673974
pmcid: 5530651
Luo K (2017) Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/CSHPERSPECT.A022137
doi: 10.1101/CSHPERSPECT.A022137
pubmed: 27836834
pmcid: 5204325
Liu L, Zhou W, Cheng CT et al (2014) TGFβ induces “BRCAness” and sensitivity to PARP inhibition in breast cancer by regulating DNA-repair genes. Mol Cancer Res 12:1597–1609. https://doi.org/10.1158/1541-7786.MCR-14-0201
doi: 10.1158/1541-7786.MCR-14-0201
pubmed: 25103497
pmcid: 4233161
Zhang H, Kozono DE, O’Connor KW et al (2016) TGF-β inhibition rescues hematopoietic stem cell defects and bone marrow failure in Fanconi anemia. Cell Stem Cell 18:668–681. https://doi.org/10.1016/J.STEM.2016.03.002
doi: 10.1016/J.STEM.2016.03.002
pubmed: 27053300
pmcid: 4860147
Satterwhite DJ, Matsunami N, White RL (2000) TGF-β1 inhibits BRCA1 expression through a pathway that requires pRb. Biochem Biophys Res Commun. https://doi.org/10.1006/bbrc.2000.3510
doi: 10.1006/bbrc.2000.3510
pubmed: 11027532
Bai F, Wang C, Liu X et al (2022) Loss of function of BRCA1 promotes EMT in mammary tumors through activation of TGFβR2 signaling pathway. Cell Death Dis 13:3. https://doi.org/10.1038/s41419-022-04646-7
doi: 10.1038/s41419-022-04646-7
Li Y, Liu Y, Chiang YJ et al (2019) DNA damage activates TGF-β signaling via ATM-c-Cbl-mediated stabilization of the type II receptor TβRII. Cell Rep 28:735-745.e4. https://doi.org/10.1016/J.CELREP.2019.06.045
doi: 10.1016/J.CELREP.2019.06.045
pubmed: 31315051
Jobling MF, Mott JD, Finnegan MT et al (2006) Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species. Radiat Res. https://doi.org/10.1667/RR0695.1
doi: 10.1667/RR0695.1
pubmed: 17149983
Cheung KJ, Ewald AJ (2016) A collective route to metastasis: seeding by tumor cell clusters. Science 352:167–169. https://doi.org/10.1126/SCIENCE.AAF6546
doi: 10.1126/SCIENCE.AAF6546
pubmed: 27124449
pmcid: 8183671
Cheung KJ, Padmanaban V, Silvestri V et al (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A 113:854. https://doi.org/10.1073/pnas.1508541113
doi: 10.1073/pnas.1508541113
Bilandzic M, Rainczuk A, Green E et al (2019) Keratin-14 (KRT14) positive leader cells mediate mesothelial clearance and invasion by ovarian cancer cells. Cancers (Basel) 11:1228
doi: 10.3390/cancers11091228
pubmed: 31443478
Hanley CJ, Henriet E, Sirka OK et al (2020) Tumor-resident stromal cells promote breast cancer invasion through regulation of the basal phenotype. Mol Cancer Res 18:1615–1622. https://doi.org/10.1158/1541-7786.MCR-20-0334
doi: 10.1158/1541-7786.MCR-20-0334
pubmed: 32868298
pmcid: 7642004
Lakhani SR, Reis-Filho JS, Fulford L et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180. https://doi.org/10.1158/1078-0432.CCR-04-2424
doi: 10.1158/1078-0432.CCR-04-2424
pubmed: 16033833
De Silva RS, Platt-Higgins A, Winstanley JHR et al (2011) Statistical association of basal cell keratins with metastasis-inducing proteins in a prognostically unfavorable group of sporadic breast cancers. Am J Pathol 179:1061–1072. https://doi.org/10.1016/J.AJPATH.2011.04.022
doi: 10.1016/J.AJPATH.2011.04.022
Verma A, Singh A, Singh MP et al (2022) EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis. Nat Commun 13:7344. https://doi.org/10.1038/S41467-022-35059-X
doi: 10.1038/S41467-022-35059-X
pubmed: 36446780
pmcid: 9708848
Heldin CH, Moustakas A (2016) Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol 8:a022053. https://doi.org/10.1101/CSHPERSPECT.A022053
doi: 10.1101/CSHPERSPECT.A022053
pubmed: 27481709
pmcid: 4968163
Zhang M, Zhang YY, Chen Y et al (2021) TGF-β signaling and resistance to cancer therapy. Front Cell Dev Biol 9:3310. https://doi.org/10.3389/FCELL.2021.786728/BIBTEX
doi: 10.3389/FCELL.2021.786728/BIBTEX
Katsuno Y, Derynck R (2021) Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 56:726–746. https://doi.org/10.1016/J.DEVCEL.2021.02.028
doi: 10.1016/J.DEVCEL.2021.02.028
pubmed: 33756119