Biomaterial engineering strategies for modeling the Bruch's membrane in age-related macular degeneration.
Journal
Neural regeneration research
ISSN: 1673-5374
Titre abrégé: Neural Regen Res
Pays: India
ID NLM: 101316351
Informations de publication
Date de publication:
01 Dec 2024
01 Dec 2024
Historique:
received:
31
10
2023
accepted:
06
02
2024
medline:
10
4
2024
pubmed:
10
4
2024
entrez:
10
4
2024
Statut:
ppublish
Résumé
Age-related macular degeneration, a multifactorial inflammatory degenerative retinal disease, ranks as the leading cause of blindness in the elderly. Strikingly, there is a scarcity of curative therapies, especially for the atrophic advanced form of age-related macular degeneration, likely due to the lack of models able to fully recapitulate the native structure of the outer blood retinal barrier, the prime target tissue of age-related macular degeneration. Standard in vitro systems rely on 2D monocultures unable to adequately reproduce the structure and function of the outer blood retinal barrier, integrated by the dynamic interaction of the retinal pigment epithelium, the Bruch's membrane, and the underlying choriocapillaris. The Bruch's membrane provides structural and mechanical support and regulates the molecular trafficking in the outer blood retinal barrier, and therefore adequate Bruch's membrane-mimics are key for the development of physiologically relevant models of the outer blood retinal barrier. In the last years, advances in the field of biomaterial engineering have provided novel approaches to mimic the Bruch's membrane from a variety of materials. This review provides a discussion of the integrated properties and function of outer blood retinal barrier components in healthy and age-related macular degeneration status to understand the requirements to adequately fabricate Bruch's membrane biomimetic systems. Then, we discuss novel materials and techniques to fabricate Bruch's membrane-like scaffolds for age-related macular degeneration in vitro modeling, discussing their advantages and challenges with a special focus on the potential of Bruch's membrane-like mimics based on decellularized tissue.
Identifiants
pubmed: 38595281
doi: 10.4103/NRR.NRR-D-23-01789
pii: 01300535-202412000-00019
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2626-2636Informations de copyright
Copyright © 2024 Copyright: © 2024 Neural Regeneration Research.
Références
Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53.
Benedicto I, Lehmann GL, Ginsberg M, Nolan DJ, Bareja R, Elemento O, Salfati Z, Alam NM, Prusky GT, Llanos P, Rabbany SY, Maminishkis A, Miller SS, Rafii S, Rodriguez-Boulan E (2017) Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nat Commun 8:15374.
Bergen AA, Arya S, Koster C, Pilgrim MG, Wiatrek-Moumoulidis D, van der Spek PJ, Hauck SM, Boon CJF, Emri E, Stewart AJ, Lengyel I (2019) On the origin of proteins in human drusen: the meet, greet and stick hypothesis. Prog Retin Eye Res 70:55–84.
Caceres PS, Rodriguez-Boulan E (2020) Retinal pigment epithelium polarity in health and blinding diseases. Curr Opin Cell Biol 62:37–45.
Cai H, Gong J, Del Priore LV, Tezel TH, Fields MA (2018) Culturing of retinal pigment epithelial cells on an ex vivo model of aged human bruch’s membrane. J Vis Exp 2018:57084.
Calejo MT, Ilmarinen T, Jongprasitkul H, Skottman H, Kellomäki M (2016) Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium. J Biomed Mater Res A 104:1646–1656.
Camino A, Guo Y, You Q, Wang J, Huang D, Bailey ST, Jia Y (2019) Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration. Neurophotonics 6:1.
Chen H, Fan X, Xia J, Chen P, Zhou X, Huang J, Yu J, Gu P (2011) Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) nanofibrous scaffolds for retinal tissue engineering. Int J Nanomedicine 6:453–461.
Chinchilla B, Fernandez-Godino R (2021) AMD-like substrate causes epithelial mesenchymal transition in iPSC-derived retinal pigment epithelial cells wild type but not C3-knockout. Int J Mol Sci 22:8183.
Chirco KR, Worthington KS, Flamme-Wiese MJ, Riker MJ, Andrade JD, Ueberheide BM, Stone EM, Tucker BA, Mullins RF (2017) Preparation and evaluation of human choroid extracellular matrix scaffolds for the study of cell replacement strategies. Acta Biomater 57:293–303.
Chung M, Lee S, Lee BJ, Son K, Jeon NL, Kim JH (2018) Wet-AMD on a chip: modeling outer blood-retinal barrier in vitro. Adv Healthc Mater doi: 10.1002/adhm.201700028.
Clark SJ, McHarg S, Tilakaratna V, Brace N, Bishop PN (2017) Bruch’s membrane compartmentalizes complement regulation in the eye with implications for therapeutic design in age-related macular degeneration. Front Immunol 8:1778.
Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243.
Cuevas E, Parmar P, Sowden JC (2019) Restoring vision using stem cells and transplantation. Adv Exp Med Biol 1185:563–567.
Curcio CA, Johnson M (2012) Structure, function, and pathology of Bruch’s membrane. In: Retina Fifth Edition. doi:10.1016/B978-1-4557-0737-9.00020-5.
Daniele ME, Bosio L, Ferrari S, Barbaro V, Rassu N, Ferrari B, Ponzin D (2022) 21 Denuded descemet’s membrane as potential tool to support human embryonic stem cell derived retinal pigment epithelial cells culture. BMJ Open Ophthalmol 7:A9.
de Jong S, Tang J, Clark SJ (2022) Age-related macular degeneration: a disease of extracellular complement amplification. Immunol Rev 313:279–297.
Dick AD (2017) Doyne lecture 2016: intraocular health and the many faces of inflammation. Eye 31:87–96.
Djigo AD, Bérubé J, Landreville S, Proulx S (2019) Characterization of a tissue-engineered choroid. Acta Biomater 84:305–316.
Dorgau B, Felemban M, Hilgen G, Kiening M, Zerti D, Hunt NC, Doherty M, Whitfield P, Hallam D, White K, Ding Y, Krasnogor N, Al-Aama J, Asfour HZ, Sernagor E, Lako M (2019) Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials 199:63–75.
Fernandez-Godino R, Bujakowska KM, Pierce EA (2018) Changes in extracellular matrix cause RPE cells to make basal deposits andactivate the alternative complement pathway. Hum Mol Genet 27:147.
Fernandez-Godino R, Pierce EA (2018) C3a triggers formation of sub-retinal pigment epithelium deposits via the ubiquitin proteasome pathway. Sci Rep 8:9679.
Ferris FL, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120:844–851.
Ferro Desideri L, Artemiev D, Bernardi E, Paschon K, Zandi S, Zinkernagel M, Anguita R (2023) Investigational drugs inhibiting complement for the treatment of geographic atrophy. Expert Opin Investig Drugs 32:1009–1016.
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ (2020) Interactions of the choroid, Bruch’s membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 76:100803.
Fritsche L, Igl W, Bailey J (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48:134–143.
Garreta E, Oria R, Tarantino C, Pla-Roca M, Prado P, Fernández-Avilés F, Campistol JM, Samitier J, Montserrat N (2017) Tissue engineering by decellularization and 3D bioprinting. Mater Today 20:166–178.
Gonçalves S, Rodrigues IP, Padrão J, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Gama FM, Dourado F, Rodrigues LR (2016) Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf B Biointerfaces 139:1–9.
Gong J, Sagiv O, Cai H, Tsang SH, Del Priore LV (2008) Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 86:957–65.
Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA (2005) Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res 80:235–248.
Hageman GS, Zhu XL, Waheed A, Sly WS (1991) Localization of carbonic anhydrase IV in a specific capillary bed of the human eye. Proc Natl Acad Sci U S A 88:2716–2720.
Hahn J, Monavarfeshani A, Qiao M, Kao AH, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Wekselblatt JB, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K (2023) Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624:415–424.
Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Shu YK, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421.
Hamilton RD, Leach L (2011) Isolation and properties of an in vitro human outer blood-retinal barrier model. Methods Mol Biol 686:401–416.
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH (2023) Bruch’s membrane: a key consideration with complement-based therapies for age-related macular degeneration. J Clin Med 12:2870.
Harris TI, Paterson CA, Farjood F, Wadsworth ID, Caldwell L, Lewis RV, Jones JA, Vargis E (2019) Utilizing recombinant spider silk proteins to develop a synthetic Bruch’s membrane for modeling the retinal pigment epithelium. ACS Biomater Sci Eng 5:4023–4036.
Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D’Amore PA (2003) Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res 77:593–599.
Heidari R, Soheili ZS, Samiei S, Ahmadieh H, Davari M, Nazemroaya F, Bagheri A, Deezagi A (2015) Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells. Appl Biochem Biotechnol 175:2399–2412.
Hunt NC, Hallam D, Chichagova V, Steel DH, Lako M (2018) The application of biomaterials to tissue engineering neural retina and retinal pigment epithelium. Adv Healthc Mater 7:e1800226.
Hussain AA, Rowe L, Marshall J (2002) Age-related alterations in the diffusional transport of amino acids across the human Bruch’s-choroid complex. J Opt Soc Am A Opt Image Sci Vis 19:166–172.
Ingber DE (2022) Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 23:467–491.
Jonas JB, Ming C, Cheung G (2017) Updates on the epidemiology of age-related macular degeneration. Asia-Pacific Acad Ophtalmol 6:493–497.
Kim HS, Kim D, Jeong YW, Choi MJ, Lee GW, Thangavelu M, Song JE, Khang G (2019) Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/Gellan gum hydrogels. Int J Biol Macromol 130:220–228.
Kim J, Park JY, Kong JS, Lee H, Won JY, Cho DW (2021) Development of 3D printed Bruch’s membrane-mimetic substance for the maturation of retinal pigment epithelial cells. Int J Mol Sci 22:1095.
Kim J, Kong S, Kim H, Jo Y, Cho DW, Jang J, Kim J, Kim H, Cho DW, Jang J, Kong JS, Jo Y (2022) A bioprinted Bruch’s membrane for modeling smoke-induced retinal pigment epithelium degeneration via hybrid membrane printing technology. Adv Healthc Mater 11:2200728.
Komez A, Baran ET, Erdem U, Hasirci N, Hasirci V (2016) Construction of a patterned hydrogel—fibrous mat bilayer structure to mimic choroid and Bruch’s membrane layers of retina. J Biomed Mater Res 104:2166–2177.
Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL (2016) Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomater 31:61–70.
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z (2023) Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 30:142–153.
Lee S, Kim S, Jeon JS (2022) Microfluidic outer blood–retinal barrier model for inducing wet age-related macular degeneration by hypoxic stress. Lab Chip 22:4359–4368.
Li G, Liu S, Chen W, Jiang Z, Luo Y, Wang D, Zheng Y, Liu Y (2022) Acellularized uvea hydrogel as novel injectable platform for cell-based delivering treatment of retinal degeneration and optimizing retinal organoids inducible system. Adv Healthc Mater 11:e2202114.
Liu H, Wu F, Chen R, Chen Y, Yao K, Liu Z, Parikh BH, Jing L, Liu T, Su X, Sun J, Huang D (2022) Electrohydrodynamic jet-printed ultrathin polycaprolactone scaffolds mimicking Bruch’s membrane for retinal pigment epithelial tissue engineering. Int J Bioprint 8:550.
Malek G, Busik J, Grant MB, Choudhary M (2018) Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 13:359–377.
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, Winschel L, Soto C, Li Y, Song Y, DeMaria W, Kumar A, Slukvin I, Schwartz MP, Murphy WL, Anand-Apte B, Chung M, Benoit DSW, Singh R (2021) 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell 28:846–862.
Maqueda M, Mosquera JL, García-Arumí J, Veiga A, Duarri A (2021) Repopulation of decellularized retinas with hiPSC-derived retinal pigment epithelial and ocular progenitor cells shows cell engraftment, organization and differentiation. Biomaterials 276:121049.
Masaeli E, Forster V, Picaud S, Karamali F, Nasr-Esfahani MH, Marquette C (2020) Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication 12:025006.
McLenachan S, Hao E, Zhang D, Zhang L, Edel M, Chen F (2017) Bioengineered Bruch’s-like extracellular matrix promotes retinal pigment epithelial differentiation. Biochem Biophys Rep 10:178–185.
Molins B, Garreta E, Pozo CH del, Adan A, Montserrat N (2021) Modelling retinal disease with a blood-retinal-barrier in vitro system combining human pluripotent stem cells and decellularized retinal tissue. Invest Ophthalmol Vis Sci 62:2694–2694.
Naylor A, Hopkins A, Hudson N, Campbell M (2020) Tight junctions of the outer blood retina barrier. Int J Mol Sci 21:211.
Paek J, Park SE, Lu Q, Park KT, Cho M, Oh JM, Kwon KW, Yi YS, Song JW, Edelstein HI, Ishibashi J, Yang W, Myerson JW, Kiseleva RY, Aprelev P, Hood ED, Stambolian D, Seale P, Muzykantov VR, Huh D (2019) Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13:7627–7643.
Paolin A, Cogliati E, Trojan D, Griffoni C, Grassetto A, Elbadawy HM, Ponzin D (2016) Amniotic membranes in ophthalmology: long term data on transplantation outcomes. Cell Tissue Bank 17:51–58.
Phelan MA, Kruczek K, Wilson JH, Brooks MJ, Drinnan CT, Regent F, Gerstenhaber JA, Swaroop A, Lelkes PI, Li T (2020) Soy protein nanofiber scaffolds for uniform maturation of human induced pluripotent stem cell-derived retinal pigment epithelium. Tissue Eng Part C Methods 26:433–446.
Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470.
Ragelle H, Goncalves A, Kustermann S, Antonetti DA, Jayagopal A (2020) Organ-on-a-chip technologies for advanced blood-retinal barrier models. J Ocul Pharmacol Ther 36:30–41.
Rahmani S, Tabandeh F, Faghihi S, Amoabediny G, Shakibaie M, Noorani B, Yazdian F (2017) Fabrication and characterization of poly(ε-caprolactone)/gelatin nanofibrous scaffolds for retinal tissue engineering. Int J Polym Mater 67:27–35.
Rickabaugh E, Weatherston D, Harris TI, Jones JA, Vargis E (2023) Engineering a biomimetic in vitro model of Bruch’s membrane using hagfish slime intermediate filament proteins. ACS Biomater Sci Eng 9:5051–5061.
Romero-vazquez S, Llorens V, Soler-boronat A, Figueras-roca M, Adan A, Molins B (2021) Interlink between inflammation and oxidative stress in age-related macular degeneration: role of complement factor H. Biomedicines 9:763.
Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO (2013) Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med 7:642–653.
Rozing MP, Durhuus JA, Krogh Nielsen M, Subhi Y, Kirkwood TB, Westendorp RG, Sørensen TL (2020) Age-related macular degeneration: a two-level model hypothesis. Prog Retin Eye Res 76:100825.
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, et al. (2019) Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11:eaat5580.
Shokoohmand A, Jeon JE, Theodoropoulos C, Baldwin JG, Hutmacher DW, Feigl B (2017) A novel 3D cultured model for studying early changes in age-related macular degeneration. Macromol Biosci 17:1700221.
Song MJ, Quinn R, Nguyen E, Hampton C, Sharma R, Park TS, Koster C, Voss T, Tristan C, Weber C, Singh A, Dejene R, Bose D, Chen YC, Derr P, Derr K, Michael S, Barone F, Chen G, Boehm M, et al. (2023) Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Nat Methods 20:149–161.
Sorkio A, Hongisto H, Kaarniranta K, Uusitalo H, Juuti-Uusitalo K, Skottman H (2014) Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating. Tissue Eng Part A 20:622–634.
Spencer C, Abend S, McHugh KJ, Saint-Geniez M (2017) Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium. J Cell Mol Med 21:2542–2552.
Starita C, Hussain AA, Pagliarini S, Marshall J (1996) Hydrodynamics of ageing Bruch’s membrane: Implications for macular disease. Exp Eye Res 62:565–572.
Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138.
Sugino IK, Sun Q, Cheewatrakoolpong N, Malcuit C, Zarbin MA (2014) Biochemical restoration of aged human bruch’s membrane: experimental studies to improve retinal pigment epithelium transplant survival and differentiation. Dev Ophthalmol 53:133–142.
Thao MT, Karumanchi DK, Yacout SM, Gaillard ER (2018) Nitrite ion modifies tyrosine and lysine residues of extracellular matrix proteins. Nitric oxide Biol Chem 79:51–56.
Treharne AJ, Thomson HAJ, Grossel MC, Lotery AJ (2012) Developing methacrylate-based copolymers as an artificial Bruch’s membrane substitute. J Biomed Mater Res Part A 100:2358–2364.
Ugarte M, Hussain AA, Marshall J (2006) An experimental study of the elastic properties of the human Bruch’s membrane-choroid complex: relevance to ageing. Br J Ophthalmol 90:621–626.
Wang X, Teoh CKG, Chan ASY, Thangarajoo S, Jonas JB, Girard MJA (2018) Biomechanical properties of bruch’s membrane-choroid complex and their influence on optic nerve head biomechanics. Investig Ophthalmol Vis Sci 59:2808–2817.
Wikström J, Elomaa M, Syväjärvi H, Kuokkanen J, Yliperttula M, Honkakoski P, Urtti A (2008) Alginate-based microencapsulation of retinal pigment epithelial cell line for cell therapy. Biomaterials 29:869–876.
Williams RL, Krishna Y, Dixon S, Haridas A, Grierson I, Sheridan C (2005) Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation. J Mater Sci Mater Med 16:1087–1092.
Zeng Z, Lam PT, Robinson ML, Del Rio-Tsonis K, Saul JM (2021) Design and characterization of biomimetic kerateine aerogel-electrospun polycaprolactone scaffolds for retinal cell culture. Ann Biomed Eng 49:1633–1644.
Zhang S, Ye K, Gao G, Song X, Xu P, Zeng J, Xie B, Zheng D, He L, Ji J, Zhong X (2022) Amniotic membrane enhances the characteristics and function of stem cell-derived retinal pigment epithelium sheets by inhibiting the epithelial-mesenchymal transition. Acta Biomater 151:183–196.