Two orthogonal differentiation gradients locally coordinate fruit morphogenesis.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 Apr 2024
Historique:
received: 18 01 2023
accepted: 26 03 2024
medline: 5 4 2024
pubmed: 5 4 2024
entrez: 4 4 2024
Statut: epublish

Résumé

Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium.

Identifiants

pubmed: 38575617
doi: 10.1038/s41467-024-47325-1
pii: 10.1038/s41467-024-47325-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2912

Subventions

Organisme : Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology)
ID : RGPIN-2018-05762
Organisme : Fonds de Recherche du Québec - Nature et Technologies (Quebec Fund for Research in Nature and Technology)
ID : 2021-PR-282285

Informations de copyright

© 2024. The Author(s).

Références

Rogers, K. W. & Schier, A. F. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011).
pubmed: 21801015 doi: 10.1146/annurev-cellbio-092910-154148
Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142, 3996–4009 (2015).
pubmed: 26628090 pmcid: 4712844 doi: 10.1242/dev.129452
Green, J. B. A. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203–1211 (2015).
pubmed: 25804733 doi: 10.1242/dev.114991
Echevin, E. et al. Growth and biomechanics of shoot organs. J. Exp. Bot. 70, 3573–3585 (2019).
pubmed: 31037307 doi: 10.1093/jxb/erz205
Moon, J. & Hake, S. How a leaf gets its shape. Curr. Opin. Plant Biol. 14, 24–30 (2011).
pubmed: 20870452 doi: 10.1016/j.pbi.2010.08.012
Goodrich, L. V. & Strutt, D. Principles of planar polarity in animal development. Development 138, 1877–1892 (2011).
pubmed: 21521735 pmcid: 3082295 doi: 10.1242/dev.054080
Andriankaja, M. et al. Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev. Cell 22, 64–78 (2012).
pubmed: 22227310 doi: 10.1016/j.devcel.2011.11.011
Sauret-Güeto, S., Calder, G. & Harberd, N. P. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. Plant J. 69, 628–639 (2012).
pubmed: 21985616 doi: 10.1111/j.1365-313X.2011.04817.x
Hervieux, N. et al. A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr. Biol. 26, 1019–1028 (2016).
doi: 10.1016/j.cub.2016.03.004
Kuchen, E. E. et al. Generation of leaf shape through early patterns of growth and tissue polarity. Science 335, 1092–1096 (2012).
pubmed: 22383846 doi: 10.1126/science.1214678
Mansfield, C. et al. Ectopic BASL reveals tissue cell polarity throughout leaf development in Arabidopsis thaliana. Curr. Biol. 28, 2638–2646.e4 (2018).
pubmed: 30100337 pmcid: 6109230 doi: 10.1016/j.cub.2018.06.019
Fozard, J. A. et al. Localization of stomatal lineage proteins reveals contrasting planar polarity patterns in Arabidopsis cotyledons. Curr. Biol. 32, 4967–4974.e5 (2022).
pubmed: 36257315 doi: 10.1016/j.cub.2022.09.049
Kierzkowski, D. et al. A growth-based framework for leaf shape development and diversity. Cell 177, 1405–1418.e17 (2019).
pubmed: 31130379 pmcid: 6548024 doi: 10.1016/j.cell.2019.05.011
Bilsborough, G. D. et al. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl. Acad. Sci. USA. 108, 3424–3429 (2011).
pubmed: 21300866 pmcid: 3044365 doi: 10.1073/pnas.1015162108
Abley, K., Sauret-Güeto, S., Marée, A. F. M. & Coen, E. Formation of polarity convergences underlying shoot outgrowths. eLife 5, e18165 (2016).
pubmed: 27478985 pmcid: 4969039 doi: 10.7554/eLife.18165
Roeder, A. H. K. & Yanofsky, M. F. Fruit development in Arabidopsis. Arabidopsis Book 4, e0075 (2006).
pubmed: 22303227 pmcid: 3243326 doi: 10.1199/tab.0075
Herrera-Ubaldo, H. & de Folter, S. Gynoecium and fruit development in Arabidopsis. Development 149, dev200120 (2022).
pubmed: 35226096 doi: 10.1242/dev.200120
Marsch-Martínez, N. & de Folter, S. Hormonal control of the development of the gynoecium. Curr. Opin. Plant Biol. 29, 104–114 (2016).
pubmed: 26799132 doi: 10.1016/j.pbi.2015.12.006
Zuñiga-Mayo, V. M., Reyes-Olalde, J. I., Marsch-Martinez, N. & de Folter, S. Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition. Front. Plant. Sci. 5, 191 (2014).
pubmed: 24860582 pmcid: 4030163
Sessions, A. et al. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124, 4481–4491 (1997).
pubmed: 9409666 doi: 10.1242/dev.124.22.4481
Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in. Arabidopsis Genes Dev. 20, 1790–1799 (2006).
pubmed: 16818609 doi: 10.1101/gad.1415106
Nole-Wilson, S., Azhakanandam, S. & Franks, R. G. Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Dev. Biol. 346, 181–195 (2010).
pubmed: 20654611 doi: 10.1016/j.ydbio.2010.07.016
Hawkins, C. & Liu, Z. A model for an early role of auxin in Arabidopsis gynoecium morphogenesis. Front. Plant Sci. 5, 327 (2014).
pubmed: 25071809 pmcid: 4086399 doi: 10.3389/fpls.2014.00327
Larsson, E., Franks, R. G. & Sundberg, E. Auxin and the Arabidopsis thaliana gynoecium. J. Exp. Bot. 64, 2619–2627 (2013).
pubmed: 23585670 doi: 10.1093/jxb/ert099
Nemhauser, J. L., Feldman, L. J. & Zambryski, P. C. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127, 3877–3888 (2000).
pubmed: 10952886 doi: 10.1242/dev.127.18.3877
Reyes-Olalde, J. I. et al. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genet. 13, e1006726 (2017).
pubmed: 28388635 pmcid: 5400277 doi: 10.1371/journal.pgen.1006726
Eldridge, T. et al. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 143, 3394–3406 (2016).
pubmed: 27624834 pmcid: 5047655 doi: 10.1242/dev.135327
Ripoll, J.-J. et al. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc. Natl Acad. Sci. USA 116, 25333–25342 (2019).
pubmed: 31757847 pmcid: 6911193 doi: 10.1073/pnas.1914096116
Scutt, C. P., Vinauger-Douard, M., Fourquin, C., Finer, C. & Dumas, C. An evolutionary perspective on the regulation of carpel development. J. Exp. Bot. 57, 2143–2152 (2006).
pubmed: 16720607 doi: 10.1093/jxb/erj188
Sluis, A. & Hake, S. Organogenesis in plants: initiation and elaboration of leaves. Trends Genet. 31, 300–306 (2015).
pubmed: 26003219 doi: 10.1016/j.tig.2015.04.004
Runions, A., Tsiantis, M. & Prusinkiewicz, P. A common developmental program can produce diverse leaf shapes. N. Phytol. 216, 401–418 (2017).
doi: 10.1111/nph.14449
Whitewoods, C. D. et al. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 367, 91–96 (2020).
pubmed: 31753850 doi: 10.1126/science.aay5433
Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990).
pubmed: 2152125 pmcid: 159928
Strauss, S. et al. Using positional information to provide context for biological image analysis with MorphoGraphX 2.0. elife 11, 72601 (2022).
doi: 10.7554/eLife.72601
Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).
pubmed: 14651850 doi: 10.1016/S0092-8674(03)00924-3
Ding, Z. & Friml, J. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc. Natl Acad. Sci. USA 107, 12046–12051 (2010).
pubmed: 20543136 pmcid: 2900669 doi: 10.1073/pnas.1000672107
di Mambro, R. et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc. Natl Acad. Sci. USA 114, E7641–E7649 (2017).
pubmed: 28831001 pmcid: 5594665 doi: 10.1073/pnas.1705833114
Liao, C.-Y. et al. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods. 12, 207–210 (2015).
pubmed: 25643149 pmcid: 4344836 doi: 10.1038/nmeth.3279
Zhang, Z. et al. A WOX/auxin biosynthesis module controls growth to shape leaf form. Curr. Biol. 30, 4857–4868.e6 (2020).
pubmed: 33035489 doi: 10.1016/j.cub.2020.09.037
Moubayidin, L. & Østergaard, L. Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development. Curr. Biol. 24, 2743–2748 (2014).
pubmed: 25455035 pmcid: 4245708 doi: 10.1016/j.cub.2014.09.080
Bowman, J. L., Baum, S. F., Eshed, Y., Putterill, J. & Alvarez, J. Molecular genetics of gynoecium development in Arabidopsis. Curr. Top. Dev. Biol 45, 155–205 (1999).
pubmed: 10332605 doi: 10.1016/S0070-2153(08)60316-6
Alvarez, J. & Smyth, D. R. CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int. J. Plant Sci. 163, 17–41 (2002).
doi: 10.1086/324178
Yu, S.-X. et al. Asynchrony of ovule primordia initiation in Arabidopsis. Development 147, dev196618 (2020).
pubmed: 33234714 pmcid: 7774900 doi: 10.1242/dev.196618
Le Gloanec, C. et al. Cell type-specific dynamics underlie cellular growth variability in plants. Development 149, dev200783 (2022).
pubmed: 35894230 doi: 10.1242/dev.200783
Modrusan, Z., Reiser, L., Feldmann, K. A., Fischer, R. L. & Haughn, G. W. Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell 6, 333–349 (1994).
pubmed: 12244239 pmcid: 160437 doi: 10.2307/3869754
Alvarez, J. & Smyth, D. R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126, 2377–2386 (1999).
pubmed: 10225997 doi: 10.1242/dev.126.11.2377
Trigueros, M. et al. The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 21, 1394–1409 (2009).
pubmed: 19435937 pmcid: 2700528 doi: 10.1105/tpc.109.065508
Li, X.-R. et al. Systems biology approach pinpoints minimum requirements for auxin distribution during fruit opening. Mol. Plant 12, 863–878 (2019).
pubmed: 31128274 doi: 10.1016/j.molp.2019.05.003
Dong, Y. et al. Regulatory diversification of INDEHISCENT in the Capsella genus directs variation in fruit morphology. Curr. Biol. 29, 1038–1046.e4 (2019).
pubmed: 30827915 pmcid: 6428689 doi: 10.1016/j.cub.2019.01.057
Zhang, Y., Berman, A. & Shani, E. Plant hormone transport and localization: signaling molecules on the move. Annu. Rev. Plant Biol. 74, 453–479 (2023).
pubmed: 36889002 doi: 10.1146/annurev-arplant-070722-015329
Wybouw, B. & De Rybel, B. Cytokinin—a developing story. Trends Plant Sci. 24, 177–185 (2019).
pubmed: 30446307 doi: 10.1016/j.tplants.2018.10.012
Chini, A., Gimenez-Ibanez, S., Goossens, A. & Solano, R. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33, 147–156 (2016).
pubmed: 27490895 doi: 10.1016/j.pbi.2016.07.005
Grant, P. K. et al. Interpretation of morphogen gradients by a synthetic bistable circuit. Nat. Commun. 11, 5545 (2020).
pubmed: 33139718 pmcid: 7608687 doi: 10.1038/s41467-020-19098-w
Vacik, T., Stubbs, J. L. & Lemke, G. A novel mechanism for the transcriptional regulation of Wnt signaling in development. Genes Dev. 25, 1783–1795 (2011).
pubmed: 21856776 pmcid: 3175715 doi: 10.1101/gad.17227011
Ebrahimkhani, M. R. & Ebisuya, M. Synthetic developmental biology: build and control multicellular systems. Curr. Opin. Chem. Biol. 52, 9–15 (2019).
pubmed: 31102790 doi: 10.1016/j.cbpa.2019.04.006
Stapornwongkul, K. S., de Gennes, M., Cocconi, L., Salbreux, G. & Vincent, J.-P. Patterning and growth control in vivo by an engineered GFP gradient. Science 370, 321–327 (2020).
pubmed: 33060356 pmcid: 7611032 doi: 10.1126/science.abb8205
Willis, L. et al. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche. Proc. Natl Acad. Sci. USA 113, E8238–E8246 (2016).
pubmed: 27930326 pmcid: 5187701 doi: 10.1073/pnas.1616768113
Melnyk, C. W., Schuster, C., Leyser, O. & Meyerowitz, E. M. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr. Biol. 25, 1306–1318 (2015).
pubmed: 25891401 pmcid: 4798781 doi: 10.1016/j.cub.2015.03.032
Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005).
pubmed: 16271866 doi: 10.1016/j.cub.2005.09.052
Žádníková, P. et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137, 607–617 (2010).
pubmed: 20110326 doi: 10.1242/dev.041277
Belteton, S. A., Sawchuk, M. G., Donohoe, B. S., Scarpella, E. & Szymanski, D. B. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis. Plant Physiol. 176, 432–449 (2018).
pubmed: 29192026 doi: 10.1104/pp.17.01554
Ichihashi, Y., Horiguchi, G., Gleissberg, S. & Tsukaya, H. The bHLH transcription factor SPATULA controls final leaf size in Arabidopsis thaliana. Plant Cell Physiol. 51, 252–261 (2010).
pubmed: 20040585 doi: 10.1093/pcp/pcp184
Murasnige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473–497 (1962).
doi: 10.1111/j.1399-3054.1962.tb08052.x
Silveira, S. R., Le Gloanec, C., Gómez-Felipe, A., Routier-Kierzkowska, A. L. & Kierzkowski, D. Live-imaging provides an atlas of cellular growth dynamics in the stamen. Plant Physiol. 188, 769–781 (2022).
pubmed: 34618064 doi: 10.1093/plphys/kiab363
Barbier de Reuille, P. et al. MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4, e05864 (2015).
pubmed: 25946108 pmcid: 4421794 doi: 10.7554/eLife.05864

Auteurs

Andrea Gómez-Felipe (A)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.

Elvis Branchini (E)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.

Binghan Wang (B)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.

Marco Marconi (M)

centro De Biotecnología Y Genómica De Plantas (Universidad Politécnica De Madrid (Upm), Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (Inia, Csic), Campus De Montegancedo, Pozuelo De Alarcón, 28223, Madrid, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.

Hana Bertrand-Rakusová (H)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.

Teodora Stan (T)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.

Jérôme Burkiewicz (J)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.

Stefan de Folter (S)

Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP, 36824, Irapuato, Mexico.

Anne-Lise Routier-Kierzkowska (AL)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.

Krzysztof Wabnik (K)

centro De Biotecnología Y Genómica De Plantas (Universidad Politécnica De Madrid (Upm), Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (Inia, Csic), Campus De Montegancedo, Pozuelo De Alarcón, 28223, Madrid, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.

Daniel Kierzkowski (D)

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada. daniel.kierzkowski@umontreal.ca.

Classifications MeSH