Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
03 Apr 2024
Historique:
received: 09 08 2023
accepted: 01 03 2024
medline: 4 4 2024
pubmed: 4 4 2024
entrez: 3 4 2024
Statut: aheadofprint

Résumé

Propionic acidaemia is a rare disorder caused by defects in the propionyl-coenzyme A carboxylase α or β (PCCA or PCCB) subunits that leads to an accumulation of toxic metabolites and to recurrent, life-threatening metabolic decompensation events. Here we report interim analyses of a first-in-human, phase 1/2, open-label, dose-optimization study and an extension study evaluating the safety and efficacy of mRNA-3927, a dual mRNA therapy encoding PCCA and PCCB. As of 31 May 2023, 16 participants were enrolled across 5 dose cohorts. Twelve of the 16 participants completed the dose-optimization study and enrolled in the extension study. A total of 346 intravenous doses of mRNA-3927 were administered over a total of 15.69 person-years of treatment. No dose-limiting toxicities occurred. Treatment-emergent adverse events were reported in 15 out of the 16 (93.8%) participants. Preliminary analysis suggests an increase in the exposure to mRNA-3927 with dose escalation, and a 70% reduction in the risk of metabolic decompensation events among 8 participants who reported them in the 12-month pretreatment period.

Identifiants

pubmed: 38570682
doi: 10.1038/s41586-024-07266-7
pii: 10.1038/s41586-024-07266-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Wongkittichote, P., Ah Mew, N. & Chapman, K. A. Propionyl-CoA carboxylase: a review. Mol. Genet. Metab. 122, 145–152 (2017).
doi: 10.1016/j.ymgme.2017.10.002 pubmed: 29033250 pmcid: 5725275
Ando, T., Rasmussen, K., Nyhan, W. L. & Hull, D. 3-hydroxypropionate: significance of beta-oxidation of propionate in patients with propionic acidemia and methylmalonic acidemia. Proc. Natl Acad. Sci. USA 69, 2807–2811 (1972).
doi: 10.1073/pnas.69.10.2807 pubmed: 4507604 pmcid: 389649
Ando, T., Rasmussen, K., Wright, J. M. & Nyhan, W. L. Isolation and identification of methylcitrate, a major metabolic product of propionate in patients with propionic acidemia. J. Biol. Chem. 247, 2200–2204 (1972).
doi: 10.1016/S0021-9258(19)45512-9 pubmed: 5016650
Baumgartner, M. R. et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J. Rare Dis. 9, 130 (2014).
doi: 10.1186/s13023-014-0130-8 pubmed: 25205257 pmcid: 4180313
Shchelochkov, O. A., Carrillo, N. & Venditti, C. Propionic acidemia. In GeneReviews (eds Adam, M. P. et al.) (Univ. Washington, 1993).
Fraser, J. L. & Venditti, C. P. Methylmalonic and propionic acidemias: clinical management update. Curr. Opin. Pediatr. 28, 682–693 (2016).
doi: 10.1097/MOP.0000000000000422 pubmed: 27653704 pmcid: 5393914
Haijes, H. A., Jans, J. J. M., Tas, S. Y., Verhoeven-Duif, N. M. & van Hasselt, P. M. Pathophysiology of propionic and methylmalonic acidemias. Part 1: complications. J. Inherit. Metab. Dis. 42, 730–744 (2019).
doi: 10.1002/jimd.12129 pubmed: 31119747
Forny, P. et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: first revision. J. Inherit. Metab. Dis. 44, 566–592 (2021).
doi: 10.1002/jimd.12370 pubmed: 33595124 pmcid: 8252715
Vockley, J. et al. Challenges and strategies for clinical trials in propionic and methylmalonic acidemias. Mol. Genet. Metab. 139, 107612 (2023).
doi: 10.1016/j.ymgme.2023.107612 pubmed: 37245378
Jiang, L. et al. Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun. 11, 5339 (2020).
doi: 10.1038/s41467-020-19156-3 pubmed: 33087718 pmcid: 7578066
Zabaleta, N., Torella, L., Weber, N. D. & Gonzalez-Aseguinolaza, G. mRNA and gene editing: late breaking therapies in liver diseases. Hepatology 76, 869–887 (2022).
doi: 10.1002/hep.32441 pubmed: 35243655
Szebeni, J., Simberg, D., Gonzalez-Fernandez, A., Barenholz, Y. & Dobrovolskaia, M. A. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat. Nanotechnol. 13, 1100–1108 (2018).
doi: 10.1038/s41565-018-0273-1 pubmed: 30348955 pmcid: 6320688
Diaz-Manera, J. et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial. Lancet Neurol. 20, 1012–1026 (2021).
doi: 10.1016/S1474-4422(21)00241-6 pubmed: 34800399
El-Gharbawy, A. H. et al. An individually, modified approach to desensitize infants and young children with Pompe disease, and significant reactions to alglucosidase alfa infusions. Mol. Genet. Metab. 104, 118–122 (2011).
doi: 10.1016/j.ymgme.2011.07.004 pubmed: 21802969 pmcid: 3711228
Yap, S., Vara, R. & Morais, A. Post-transplantation outcomes in patients with PA or MMA: a review of the literature. Adv. Ther. 37, 1866–1896 (2020).
doi: 10.1007/s12325-020-01305-1 pubmed: 32270363 pmcid: 7141097
Kremsner, P. G. et al. Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2: a phase 1 randomized clinical trial. Wien. Klin. Wochenschr. 133, 931–941 (2021).
doi: 10.1007/s00508-021-01922-y pubmed: 34378087 pmcid: 8354521
Lawitz, E. J. et al. BMS-986263 in patients with advanced hepatic fibrosis: 36-week results from a randomized, placebo-controlled phase 2 trial. Hepatology 75, 912–923 (2022).
doi: 10.1002/hep.32181 pubmed: 34605045
Zhang, X. et al. Patisiran pharmacokinetics, pharmacodynamics, and exposure–response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. J. Clin. Pharmacol. 60, 37–49 (2020).
doi: 10.1002/jcph.1480 pubmed: 31322739
An, D. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 21, 3548–3558 (2017).
doi: 10.1016/j.celrep.2017.11.081 pubmed: 29262333 pmcid: 9667413
Sampson, H. A. et al. Second symposium on the definition and management of anaphylaxis: summary report—Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J. Allergy Clin. Immunol. 117, 391–397 (2006).
doi: 10.1016/j.jaci.2005.12.1303 pubmed: 16461139
Manivannan, V., Decker, W. W., Stead, L. G., Li, J. T. & Campbell, R. L. Visual representation of National Institute of Allergy and Infectious Disease and Food Allergy and Anaphylaxis Network criteria for anaphylaxis. Int. J. Emerg. Med. 2, 3–5 (2009).
doi: 10.1007/s12245-009-0093-z pubmed: 19390910 pmcid: 2672985
Mao, X. et al. Ultrasensitive electrochemical detection of mRNA using branched DNA amplifiers. Electrochem. Commun. 10, 1847–1850 (2008).
doi: 10.1016/j.elecom.2008.09.028

Auteurs

Dwight Koeberl (D)

Duke University School of Medicine, Durham, NC, USA.

Andreas Schulze (A)

Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.

Neal Sondheimer (N)

Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.

Gerald S Lipshutz (GS)

University of California at Los Angeles (UCLA), Los Angeles, CA, USA.

Tarekegn Geberhiwot (T)

University of Birmingham, Birmingham, UK.

Lerong Li (L)

Moderna, Inc., Cambridge, MA, USA.

Rajnish Saini (R)

Moderna, Inc., Cambridge, MA, USA.

Junxiang Luo (J)

Moderna, Inc., Cambridge, MA, USA.

Vanja Sikirica (V)

Moderna, Inc., Cambridge, MA, USA.

Ling Jin (L)

Moderna, Inc., Cambridge, MA, USA.

Min Liang (M)

Moderna, Inc., Cambridge, MA, USA.

Mary Leuchars (M)

Moderna, Inc., Cambridge, MA, USA.

Stephanie Grunewald (S)

Metabolic Unit, Great Ormond Street Hospital for Children, London, UK. Stephanie.Grunewald@gosh.nhs.uk.

Classifications MeSH