Network analysis of anxiety and depressive symptoms during the COVID-19 pandemic in older adults in the United Kingdom.
Anxiety
Cross-lagged panel network
Depression
Network analysis
Older adult
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 Apr 2024
02 Apr 2024
Historique:
received:
06
09
2023
accepted:
27
03
2024
medline:
3
4
2024
pubmed:
3
4
2024
entrez:
2
4
2024
Statut:
epublish
Résumé
The health crisis caused by COVID-19 in the United Kingdom and the confinement measures that were subsequently implemented had unprecedented effects on the mental health of older adults, leading to the emergence and exacerbation of different comorbid symptoms including depression and anxiety. This study examined and compared depression and anxiety symptom networks in two specific quarantine periods (June-July and November-December) in the older adult population in the United Kingdom. We used the database of the English Longitudinal Study of Aging COVID-19 Substudy, consisting of 5797 participants in the first stage (54% women) and 6512 participants in the second stage (56% women), all over 50 years of age. The symptoms with the highest centrality in both times were: "Nervousness (A1)" and "Inability to relax (A4)" in expected influence and predictability, and "depressed mood (D1"; bridging expected influence). The latter measure along with "Irritability (A6)" overlapped in both depression and anxiety clusters in both networks. In addition, a the cross-lagged panel network model was examined in which a more significant influence on the direction of the symptom "Nervousness (A1)" by the depressive symptoms of "Anhedonia (D6)", "Hopelessness (D7)", and "Sleep problems (D3)" was observed; the latter measure has the highest predictive capability of the network. The results report which symptoms had a higher degree of centrality and transdiagnostic overlap in the cross-sectional networks (invariants) and the cross-lagged panel network model of anxious and depressive symptomatology.
Identifiants
pubmed: 38565592
doi: 10.1038/s41598-024-58256-8
pii: 10.1038/s41598-024-58256-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7741Subventions
Organisme : Universidad Peruana Unión
ID : Resolución N° 2556- 2022/UPeU-CU
Organisme : Universidad Señor de Sipán
ID : RESOLUCIÓN DE DIRECTORIO N°015-2022/PD-USS
Informations de copyright
© 2024. The Author(s).
Références
Drinot, P. Coronavirus en el Reino Unido: el costo del excepcionalismo. Hist Cienc Saude Manguinhos 28, 1269–1274 (2021).
pubmed: 34346997
doi: 10.1590/s0104-59702021005000011
Sánchez Ferro S. LA RESPUESTA BRITÁNICA FRENTE A LA CRISIS DESATADA POR LA COVID-19. In: Los Efectos Horizontales de la COVID sobre el sistema constitucional. Fundación Manuel Giménez Abad, 2020. Epub ahead of print 2020. https://doi.org/10.47919/FMGA.OC20.0022 .
Unger, S. & Meiran, W. Student attitudes towards online education during the COVID-19 viral outbreak of 2020: Distance learning in a time of social distance. Int. J. Technol. Educ. Sci. 4, 256–266 (2020).
doi: 10.46328/ijtes.v4i4.107
Hettich, N. et al. Impact of the COVID-19 pandemic on depression, anxiety, loneliness, and satisfaction in the German general population: A longitudinal analysis. Soc. Psychiatry Psychiatr. Epidemiol. 57, 2481–2490 (2022).
pubmed: 35680681
pmcid: 9181932
doi: 10.1007/s00127-022-02311-0
McBride, O. et al. Monitoring the psychological, social, and economic impact of the COVID-19 pandemic in the population: Context, design and conduct of the longitudinal COVID-19 psychological research consortium (C19PRC) study. Int. J. Methods Psychiatr. Res. https://doi.org/10.1002/mpr.1861 (2021).
doi: 10.1002/mpr.1861
pubmed: 34739156
pmcid: 8646695
Steptoe, A. & Di Gessa, G. Mental health and social interactions of older people with physical disabilities in England during the COVID-19 pandemic: A longitudinal cohort study. Lancet Public Health 6, e365–e373 (2021).
pubmed: 33894138
pmcid: 8517412
doi: 10.1016/S2468-2667(21)00069-4
van der Velden, P. G. et al. Anxiety and depression symptoms, the recovery from symptoms, and loneliness before and after the COVID-19 outbreak among the general population: Findings from a Dutch population-based longitudinal study. PLoS ONE 16, e0245057 (2021).
pubmed: 33411843
pmcid: 7790276
doi: 10.1371/journal.pone.0245057
Umer, A. et al. Depression and sleep issues in aging: A prospective study. Pak. J. Health Sci. 3, 149–153 (2022).
Girdhar, R., Srivastava, V. & Sethi, S. Managing mental health issues among elderly during COVID-19 pandemic. J. Geriatr. Care Res. 7, 32–35 (2020).
Granda-Oblitas, A., Quiroz Gil, G. X. & Runzer Colmenares, F. M. Efectos del aislamiento en adultos mayores durante la pandemia: una revisión de la literatura. Acta Medica Peruana https://doi.org/10.35663/amp.2021.384.2225 (2022).
doi: 10.35663/amp.2021.384.2225
Grey, I. et al. The role of perceived social support on depression and sleep during the COVID-19 pandemic. Psychiatry Res. 293, 113452 (2020).
pubmed: 32977047
pmcid: 7500407
doi: 10.1016/j.psychres.2020.113452
Martínez-González, L., Olvera, V. G. & Villarreal, R. E. Efecto de la técnica de respiración profunda en el nivel de ansiedad en adultos mayores. Rev Enferm Inst Mex Seguro Soc 26, 99–104 (2018).
King, M. V., Cáceres, J. A. G. & Abdulkadir, M. S. Prevalencia de depresión y factores de riesgo asociados a deterioro cognitivo en adultos mayores. Revista Cubana de Medicina General Integral 36, 1–17 (2021).
Groen, R. N. et al. Comorbidity between depression and anxiety: Assessing the role of bridge mental states in dynamic psychological networks. BMC Med. 18, 308 (2020).
pubmed: 32988400
pmcid: 7523307
doi: 10.1186/s12916-020-01738-z
Rector, N. A., Szacun-Shimizu, K. & Leybman, M. Anxiety sensitivity within the anxiety disorders: Disorder-specific sensitivities and depression comorbidity. Behav. Res. Ther. 45, 1967–1975 (2007).
pubmed: 17084380
doi: 10.1016/j.brat.2006.09.017
Hevey, D. Network analysis: A brief overview and tutorial. Health Psychol. Behav. Med. 6, 301–328 (2018).
pubmed: 34040834
pmcid: 8114409
doi: 10.1080/21642850.2018.1521283
Ramos-Vera, C. & Serpa-Barrientos, A. Network analysis in clinical research in the COVID-19 context. Rev. Fac. Med. 70, e94407 (2021).
doi: 10.15446/revfacmed.v70n1.94407
Quintana, R. The ecology of human behavior: A network perspective. Method Innov. 15, 42–61 (2022).
doi: 10.1177/20597991221077911
Zhao, Y., Tang, Q. & Zhang, C., et al. Anxiety and depression symptoms among older Chinese migrants during COVID-19: A network analysis. PREPRINT Available at Research Square. https://doi.org/10.21203/rs3.rs-3206545/v1 .
Zavlis, O. et al. How does the COVID-19 pandemic impact on population mental health? A network analysis of COVID influences on depression, anxiety and traumatic stress in the UK population. Psychol. Med. 52, 3825–3833 (2022).
doi: 10.1017/S0033291721000635
Yu, J. & Mahendran, R. COVID-19 lockdown has altered the dynamics between affective symptoms and social isolation among older adults: results from a longitudinal network analysis. Sci. Rep. 11, 14739 (2021).
pubmed: 34282245
pmcid: 8289844
doi: 10.1038/s41598-021-94301-6
Borsboom, D. et al. Network analysis of multivariate data in psychological science. Nat. Rev. Methods Prim. 1, 58 (2021).
doi: 10.1038/s43586-021-00055-w
Li, W. et al. Network analysis of depression, anxiety, posttraumatic stress symptoms, insomnia, pain, and fatigue in clinically stable older patients with psychiatric disorders during the COVID-19 outbreak. J. Geriatr. Psychiatry Neurol. 35, 196–205 (2022).
pubmed: 35245998
doi: 10.1177/08919887221078559
Zhang, L. et al. Seeking bridge symptoms of anxiety, depression, and sleep disturbance among the elderly during the lockdown of the COVID-19 pandemic—A network approach. Front. Psychiatry https://doi.org/10.3389/fpsyt.2022.919251 (2022).
doi: 10.3389/fpsyt.2022.919251
pubmed: 37033880
pmcid: 10074425
Jin, Y. et al. Depressive symptoms and gender differences in older adults in Hong Kong during the COVID-19 pandemic: A network analysis approach. Int. J. Biol. Sci. 18, 3934–3941 (2022).
pubmed: 35844786
pmcid: 9274487
doi: 10.7150/ijbs.69460
Lange, J. & Zickfeld, J. H. Emotions as overlapping causal networks of emotion components: Implications and methodological approaches. Emot. Rev. 13, 157–167 (2021).
doi: 10.1177/1754073920988787
Ribeiro, P. H. et al. The performance of the Clique Percolation to identify overlapping symptoms in psychological networks. PsyArXiv https://doi.org/10.31234/osf.io/fk963 (2022).
doi: 10.31234/osf.io/fk963
Dalgleish, T. et al. Transdiagnostic approaches to mental health problems: Current status and future directions. J. Consult. Clin. Psychol. 88, 179–195 (2020).
pubmed: 32068421
pmcid: 7027356
doi: 10.1037/ccp0000482
Garabiles, M. R. et al. Exploring comorbidity between anxiety and depression among migrant Filipino domestic workers: A network approach. J. Affect. Disord. 250, 85–93 (2019).
pubmed: 30836284
doi: 10.1016/j.jad.2019.02.062
Owczarek, M. et al. How is loneliness related to anxiety and depression: A population-based network analysis in the early lockdown period. Int. J. Psychol. 57, 585–596 (2022).
pubmed: 35523540
pmcid: 9545877
doi: 10.1002/ijop.12851
Ramos-Vera, C. et al. Psychological impact of COVID-19: A cross-lagged network analysis from the English Longitudinal Study of Aging COVID-19 database. Front. Psychiatry https://doi.org/10.3389/fpsyt.2023.1124257 (2023).
doi: 10.3389/fpsyt.2023.1124257
pubmed: 36911134
pmcid: 9992548
Di Gessa, G. & Zaninotto, P. Health behaviors and mental health during the COVID-19 pandemic: Evidence from the English longitudinal study of aging. J. Appl. Gerontol. 42, 1541–1550 (2023).
pubmed: 36854708
pmcid: 9978235
doi: 10.1177/07334648231159373
Radloff, L. S. The CES-D scale. Appl. Psychol. Meas. 1, 385–401 (1977).
doi: 10.1177/014662167700100306
Spitzer, R. L. et al. A brief measure for assessing generalized anxiety disorder. Arch. Intern. Med. 166, 1092 (2006).
pubmed: 16717171
doi: 10.1001/archinte.166.10.1092
R Core Team. R: A language and environment for statistical computing (4.2.1 ’Funny-Looking Kid’). R Core Team. https://www.r-project.org/ (2022). Accessed 5 September 2023.
Epskamp, S. et al. qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i04 (2012).
doi: 10.18637/jss.v048.i04
Csardi G, NT. igraph: Network analysis and visualization (1.3.5). R-CRAN. R-CRAN. https://CRAN.R-project.org/package=igraph (2022). Accessed 4 September 2023.
Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
Epskamp S. bootnet: Bootstrap methods for various network estimation routines (1.5). R-CRAN. https://cran.r-project.org/package=bootnet (2021). Accessed 5 September 2023.
Lange, J. CliquePercolation: An R package for conducting and visualizing results of the clique percolation network community detection algorithm. J. Open Source Softw. 6, 3210 (2021).
doi: 10.21105/joss.03210
Jones P. Networktools: Tools for identifying important nodes in networks (1.5.0). R-CRAN. https://cran.r-project.org/package=networktools (2022). Accessed 5 September 2023.
van Borkulo, C., Epskamp, S. & Jones P. NetworkComparisonTest: Statistical comparison of two networks based on three invariance measures (2.2.1). R-CRAN. https://CRAN.R-project.org/package=NetworkComparisonTest (2019). Accessed 5 September 2023.
Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012).
doi: 10.18637/jss.v048.i02
Jiang, H., Fei, X., Liu, H., Roeder, K., Lafferty, J., Wasserman, L., Li, X. & Zhao, T.. huge: High-dimensional undirected graph estimation (1.3.5). R-CRAN. https://cran.r-project.org/package=huge (2019). Accessed 5 September 2023.
Zhao, T. et al. The huge package for high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13, 1059–1062 (2012).
pubmed: 26834510
pmcid: 4729207
Liu, H., Lafferty, J. & Wasserman, L. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. J. Mach. Learn. Res. 10, 2295–2328 (2009).
Lysen, S. Permuted Inclusion Criterion: A Variable Selection Technique. Dissertation, University of Pennsylvania (2009).
Epskamp, S., Borsboom, D. & Fried, E. I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 50, 195–212 (2018).
pubmed: 28342071
doi: 10.3758/s13428-017-0862-1
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
doi: 10.1103/PhysRevE.69.026113
Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006).
doi: 10.1103/PhysRevE.74.016110
Traag, V. A. & Bruggeman, J. Community detection in networks with positive and negative links. Phys. Rev. E 80, 036115 (2009).
doi: 10.1103/PhysRevE.80.036115
Robinaugh, D. J., Millner, A. J. & McNally, R. J. Identifying highly influential nodes in the complicated grief network. J. Abnorm. Psychol. 125, 747–757 (2016).
pubmed: 27505622
pmcid: 5060093
doi: 10.1037/abn0000181
Adamcsek, B. et al. CFinder: Locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006).
pubmed: 16473872
doi: 10.1093/bioinformatics/btl039
Hochberg, Y. & Tamhane, A. C. Stepwise procedures for pairwise and more general comparisons among all treatments. In: Wiley Series in Probability and Statistics 110–133 (1987).
van Borkulo, C. D. et al. Comparing network structures on three aspects: A permutation test. Psychol. Methods https://doi.org/10.1037/met0000476 (2022).
doi: 10.1037/met0000476
pubmed: 35404628
Borsboom, D. et al. False alarm? A comprehensive reanalysis of ‘evidence that psychopathology symptom networks have limited replicability’ by Forbes, Wright, Markon, and Krueger (2017). J. Abnorm. Psychol. 126, 989–999 (2017).
pubmed: 29106282
doi: 10.1037/abn0000306
Rhemtulla, M., van Bork, R. & Cramer, A. O. J., et al. Cross-lagged network models. Multivariate Behavioral Research. Preprint.
Palagini, L. et al. Sleep, insomnia and mental health. J. Sleep Res. https://doi.org/10.1111/jsr.13628 (2022).
doi: 10.1111/jsr.13628
pubmed: 36217818
Kola, L. et al. COVID-19 mental health impact and responses in low-income and middle-income countries: Reimagining global mental health. Lancet Psychiatry 8, 535–550 (2021).
pubmed: 33639109
pmcid: 9764935
doi: 10.1016/S2215-0366(21)00025-0
Sen, K., Prybutok, G. & Prybutok, V. The use of digital technology for social wellbeing reduces social isolation in older adults: A systematic review. SSM Popul. Health 17, 101020 (2022).
pubmed: 35024424
doi: 10.1016/j.ssmph.2021.101020
Kaiser, T. et al. Unraveling the comorbidity of depression and anxiety in a large inpatient sample: Network analysis to examine bridge symptoms. Depress Anxiety 38, 307–317 (2021).
pubmed: 33465284
doi: 10.1002/da.23136
Levine, S. L. et al. Unhappy or unsatisfied: Distinguishing the role of negative affect and need frustration in depressive symptoms over the academic year and during the COVID-19 pandemic. Motiv. Emot. 46, 126–136 (2022).
pubmed: 34873352
doi: 10.1007/s11031-021-09920-3
Vargas, I. et al. Measuring the effects of social isolation and dissatisfaction on depressive symptoms during the COVID-19 pandemic: The moderating role of sleep and physical activity. Brain Sci 11, 1449 (2021).
pubmed: 34827448
pmcid: 8615892
doi: 10.3390/brainsci11111449
Killgore, W. D. S. et al. Loneliness: A signature mental health concern in the era of COVID-19. Psychiatry Res 290, 113117 (2020).
pubmed: 32480121
pmcid: 7255345
doi: 10.1016/j.psychres.2020.113117
Española, A. & Belloch, A. Propuestas para un enfoque transdiagnóstico de los trastornos mentales y del comportamiento: Evidencia, utilidad y limitaciones. Revista de Psicopatología y Psicología Clínica 17, 295–311 (2012).
doi: 10.5944/rppc.vol.17.num.3.2012.11845
Sandín, B., Chorot, P. & Valiente, R. M. Transdiagnóstico: Nueva frontera en psicología clínica = Transdiagnostic: A New frontier in clinical psychology. Revista de Psicopatología y Psicología Clínica 17, 185 (2012).
doi: 10.5944/rppc.vol.17.num.3.2012.11839
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Diagn. Stat. Man. Ment. Disord. (2013). https://doi.org/10.1176/APPI.BOOKS.9780890425596 .
Fusar-Poli, P. et al. Transdiagnostic psychiatry: A systematic review. World Psychiatry 18, 192–207 (2019).
pubmed: 31059629
pmcid: 6502428
doi: 10.1002/wps.20631
Borsboom, D. Reflections on an emerging new science of mental disorders. Behav. Res. Ther. 156, 104127 (2022).
pubmed: 35934488
doi: 10.1016/j.brat.2022.104127
Fried, E. I. Studying mental health problems as systems, not syndromes. Curr. Dir. Psychol. Sci. 31, 500–508 (2022).
doi: 10.1177/09637214221114089
Bullis, J. R. et al. What is an emotional disorder? A transdiagnostic mechanistic definition with implications for assessment, treatment, and prevention. Clin. Psychol. Sci. Pract. 26, e12278 (2019).
doi: 10.1111/cpsp.12278
Gross, J. J. Emotion regulation: Current status and future prospects. Psychol. Inq. 26, 1–26 (2015).
doi: 10.1080/1047840X.2014.940781
Gross, J. J. & Feldman, B. L. Emotion generation and emotion regulation: one or two depends on your point of view. Emot. Rev. 3, 8–16 (2011).
pubmed: 21479078
pmcid: 3072688
doi: 10.1177/1754073910380974
Gross, J. J. & Jazaieri, H. Emotion, emotion regulation, and psychopathology. Clin. Psychol. Sci. 2, 387–401 (2014).
doi: 10.1177/2167702614536164
Nørby, S. Forgetting and emotion regulation in mental health, anxiety and depression. Memory 26, 342–363 (2018).
pubmed: 28697639
doi: 10.1080/09658211.2017.1346130
Parlapani, E. et al. Intolerance of uncertainty and loneliness in older adults during the COVID-19 pandemic. Front. Psychiatry https://doi.org/10.3389/fpsyt.2020.00842 (2020).
doi: 10.3389/fpsyt.2020.00842
pubmed: 32973584
pmcid: 7468454
Welzel, F. D. et al. Gesundheitliche Folgen sozialer Isolation: Qualitative Studie zu psychosozialen Belastungen und Ressourcen älterer Menschen im Zusammenhang mit der COVID-19-Pandemie. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 64, 334–341 (2021).
pubmed: 33528612
pmcid: 7852481
doi: 10.1007/s00103-021-03281-5
Bai, W. et al. Network analysis of depression, anxiety, insomnia and quality of life among Macau residents during the COVID-19 pandemic. J. Affect. Disord. 311, 181–188 (2022).
pubmed: 35594975
pmcid: 9112609
doi: 10.1016/j.jad.2022.05.061
Bard, H. A. et al. Insomnia, depression, and anxiety symptoms interact and individually impact functioning: A network and relative importance analysis in the context of insomnia. Sleep Med. 101, 505–514 (2023).
pubmed: 36527942
doi: 10.1016/j.sleep.2022.12.005
Hoffart, A., Johnson, S. U. & Ebrahimi, O. V. The network of stress-related states and depression and anxiety symptoms during the COVID-19 lockdown. J. Affect. Disord. 294, 671–678 (2021).
pubmed: 34333175
pmcid: 8433602
doi: 10.1016/j.jad.2021.07.019
Müller, F. et al. Social isolation and loneliness during COVID-19 lockdown: Associations with depressive symptoms in the German old-age population. Int. J. Environ. Res. Public Health 18, 3615 (2021).
pubmed: 33807232
pmcid: 8036754
doi: 10.3390/ijerph18073615
Wei, Z. et al. Network of depression and anxiety symptoms in patients with epilepsy. Epilepsy Res. 175, 106696 (2021).
pubmed: 34186384
doi: 10.1016/j.eplepsyres.2021.106696
Knoop, V. et al. Fatigue and the prediction of negative health outcomes: A systematic review with meta-analysis. Ageing Res. Rev. 67, 101261 (2021).
pubmed: 33548508
doi: 10.1016/j.arr.2021.101261
Maxfield, M. & Pituch, K. A. COVID-19 worry, mental health indicators, and preparedness for future care needs across the adult lifespan. Aging Ment. Health 25, 1273–1280 (2021).
pubmed: 33043689
doi: 10.1080/13607863.2020.1828272
Bai, W. et al. Network analysis of anxiety and depressive symptoms among nursing students during the COVID-19 pandemic. J. Affect. Disord. 294, 753–760 (2021).
pubmed: 34375200
pmcid: 8433813
doi: 10.1016/j.jad.2021.07.072
Jin, Y. et al. Network analysis of comorbid depression and anxiety and their associations with quality of life among clinicians in public hospitals during the late stage of the COVID-19 pandemic in China. J. Affect. Disord. 314, 193–200 (2022).
pubmed: 35780965
pmcid: 9242942
doi: 10.1016/j.jad.2022.06.051
Cai, H. et al. Network analysis of comorbid anxiety and insomnia among clinicians with depressive symptoms during the late stage of the COVID-19 pandemic: A cross-sectional study. Nat. Sci. Sleep 14, 1351–1362 (2022).
pubmed: 35959360
pmcid: 9359521
doi: 10.2147/NSS.S367974
Park, S.-C. & Kim, D. The centrality of depression and anxiety symptoms in major depressive disorder determined using a network analysis. J. Affect. Disord. 271, 19–26 (2020).
pubmed: 32312693
doi: 10.1016/j.jad.2020.03.078
Silva, C. F. R. et al. Depression, disability and sleep disturbance are the main explanatory factors of fatigue in rheumatoid arthritis: A path analysis model. Clin. Exp. Rheumatol. 38, 314–321 (2020).
pubmed: 31365331
doi: 10.55563/clinexprheumatol/hkhbad
Niu, X. & Snyder, H. R. The role of maladaptive emotion regulation in the bidirectional relation between sleep and depression in college students during the COVID-19 pandemic. Anxiety Stress Coping 36, 83–96 (2023).
pubmed: 35536737
doi: 10.1080/10615806.2022.2073441