Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment.


Journal

NPJ precision oncology
ISSN: 2397-768X
Titre abrégé: NPJ Precis Oncol
Pays: England
ID NLM: 101708166

Informations de publication

Date de publication:
29 Mar 2024
Historique:
received: 19 10 2023
accepted: 13 03 2024
medline: 30 3 2024
pubmed: 30 3 2024
entrez: 30 3 2024
Statut: epublish

Résumé

This review delves into the most recent advancements in applying artificial intelligence (AI) within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a significant global health issue. AI has brought transformative innovations to brain tumor management, utilizing imaging, histopathological, and genomic tools for efficient detection, categorization, outcome prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review covers AI techniques, from classical machine learning to deep learning, highlighting current applications and challenges. Promising directions for future research include multimodal data integration, generative AI, large medical language models, precise tumor delineation and characterization, and addressing racial and gender disparities. Adaptive personalized treatment strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and providing a holistic understanding of its transformative impact on patient care.

Identifiants

pubmed: 38553633
doi: 10.1038/s41698-024-00575-0
pii: 10.1038/s41698-024-00575-0
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

80

Subventions

Organisme : Emory University
ID : 00128909

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Brain tumors - classifications, symptoms, diagnosis and treatments. https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors .
Fan, Y. et al. Burden and trends of brain and central nervous system cancer from 1990 to 2019 at the global, regional, and country levels. Arch. Public Health 80, 209 (2022).
Ostrom, Q. T. et al. CBTRUs statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neuro. Oncol. 24, V1–V95 (2022).
pubmed: 36196752 pmcid: 9533228 doi: 10.1093/neuonc/noac202
About Glioblastoma. https://braintumor.org/events/glioblastoma-awareness-day/about-glioblastoma/ . National Brain Tumor Society.
Fekete, B. et al. What predicts survival in glioblastoma? A population-based study of changes in clinical management and outcome. Front. Surg. 10, 1249366 (2023).
pubmed: 37711136 pmcid: 10498299 doi: 10.3389/fsurg.2023.1249366
Al Sharie, S., Abu Laban, D. & Al-Hussaini, M. Decoding diffuse midline gliomas: a comprehensive review of pathogenesis, diagnosis and treatment. Cancers (Basel). 15, 4869 (2023).
pubmed: 37835563 pmcid: 10571999 doi: 10.3390/cancers15194869
Acuña-Villaorduña, A., Baranda, J. C., Boehmer, J., Fashoyin-Aje, L. & Gore, S. D. Equitable access to clinical trials: how do we achieve it? Am. Soc. Clin. Oncol. Educ. B. https://doi.org/10.1200/edbk_389838 (2023).
Lamba, N. et al. Socioeconomic disparities associated with MGMT promoter methylation testing for patients with glioblastoma. JAMA Oncol. 6, 1972–1974 (2020).
Porter, A. B., Wen, P. Y. & Polley, M.-Y. C. Molecular profiling in neuro-oncology: where we are, where we’re heading, and how we ensure everyone can come along. Am. Soc. Clin. Oncol. Educ. B. https://doi.org/10.1200/edbk_389322 (2023).
Xiao, F. et al. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am. J. Transl. Res. 12, 1379–1396 (2020).
Villanueva-Meyer, J. E., Mabray, M. C. & Cha, S. Current clinical brain tumor imaging. Neurosurgery 81, 397–415 (2017).
pubmed: 28486641 pmcid: 5581219 doi: 10.1093/neuros/nyx103
Weinberg, B. et al. Nimg-23. Brain tumor reporting and data system (bt-rads) and quantitative tools to guide its implementation. Neuro. Oncol. 21, vi166 (2019).
Atanasov, A. G. et al. First, do no harm (gone wrong): total-scale analysis of medical errors scientific literature. Front. Public Heal. 8, 558913 (2020).
doi: 10.3389/fpubh.2020.558913
Aldape, K. et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 16, 509 (2019).
pubmed: 30733593 pmcid: 6650350 doi: 10.1038/s41571-019-0177-5
Bi, W. L. et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA. Cancer J. Clin. 69, 127–157 (2019).
Dong, X. et al. 911 Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer 11, e005583 (2022).
Becker, A. P., Sells, B. E., Jaharul Haque, S. & Chakravarti, A. Tumor heterogeneity in glioblastomas: from light microscopy to molecular pathology. Cancers (Basel). 13, 1–25 (2021).
doi: 10.3390/cancers13040761
Stone, J. B. & DeAngelis, L. M. Cancer-treatment-induced neurotoxicity-focus on newer treatments. Nat. Rev. Clin. Oncol. 13, 92–105 (2016).
Monsour, R., Dutta, M., Mohamed, A. Z., Borkowski, A. & Viswanadhan, N.A. Neuroimaging in the era of artificial intelligence: current applications. Fed. Pract. 39, S14–S20 (2022).
pubmed: 35765692 pmcid: 9227741
Philip, A. K., Samuel, B. A., Bhatia, S., Khalifa, S. A. M. & El-Seedi, H. R. Artificial intelligence and precision medicine: a new frontier for the treatment of brain tumors. Life. 13, 24 (2023).
Dundar, T. T. et al. Machine learning-based surgical planning for neurosurgery: artificial intelligent approaches to the cranium. Front. Surg. 9, 863633 (2022).
pubmed: 35574559 pmcid: 9099011 doi: 10.3389/fsurg.2022.863633
Mock, M., Edavettal, S., Langmead, C. & Russell, A. AI can help to speed up drug discovery — but only if we give it the right data. Nature 621, 467–470 (2023).
Qureshi, R. et al. AI in drug discovery and its clinical relevance. Heliyon 9, e17575 (2023).
Pati, S. et al. Federated learning enables big data for rare cancer boundary detection. Nat. Commun. 13, 7346 (2022).
pubmed: 36470898 pmcid: 9722782 doi: 10.1038/s41467-022-33407-5
Schork, N. J. Artificial intelligence and personalized medicine. Cancer Treat. Res. 178, 265 (2019).
pubmed: 31209850 pmcid: 7580505 doi: 10.1007/978-3-030-16391-4_11
Uddin, M., Wang, Y. & Woodbury-Smith, M. Artificial intelligence for precision medicine in neurodevelopmental disorders. npj Digit. Med. 2, 1–10 (2019).
doi: 10.1038/s41746-019-0191-0
Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Artificial intelligence in surgery: promises and perils. Ann. Surg. 268, 70–76 (2018).
pubmed: 29389679 doi: 10.1097/SLA.0000000000002693
Chen, R. J. et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).
Thomasian, N. M., Eickhoff, C. & Adashi, E. Y. Advancing health equity with artificial intelligence. J. Public Health Policy 42, 602–611 (2021).
Zheng, Y., Carrillo-Perez, F., Pizurica, M., Heiland, D. H. & Gevaert, O. Spatial cellular architecture predicts prognosis in glioblastoma. Nat. Commun. 14, 4122 (2023).
pubmed: 37433817 pmcid: 10336135 doi: 10.1038/s41467-023-39933-0
Wu, J. et al. Radiological tumour classification across imaging modality and histology. Nat. Mach. Intell. 3, 787–798 (2021).
pubmed: 34841195 pmcid: 8612063 doi: 10.1038/s42256-021-00377-0
García-Figueiras, R. et al. Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer? Diagn. Interv. Radiol. 22, 75–89 (2016).
Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).
pubmed: 16530701 doi: 10.1016/j.ccr.2006.02.019
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro. Oncol. 23, 1231–1251 (2021).
pubmed: 34185076 pmcid: 8328013 doi: 10.1093/neuonc/noab106
Alix-Panabières, C. & Pantel, K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 11, 858–873 (2021).
pubmed: 33811121 doi: 10.1158/2159-8290.CD-20-1311
Yang, H. et al. Cerebrospinal fluid-derived circulating tumor DNA is more comprehensive than plasma in NSCLC patients with leptomeningeal metastases regardless of extracranial evolution. Heliyon 8, e12374 (2022).
pubmed: 36643302 pmcid: 9834711 doi: 10.1016/j.heliyon.2022.e12374
Lehner, K. R., Jiang, K., Rincon-Torroella, J., Perera, R. & Bettegowda, C. Cerebrospinal fluid biomarkers in pediatric brain tumors: a systematic review. Neoplasia 35, 100852 (2023).
pubmed: 36516487 doi: 10.1016/j.neo.2022.100852
Liu, H. et al. M3AE: multimodal representation learning for brain tumor segmentation with missing modalities. Proc. AAAI Conf. Artif. Intell. 37, 1657–1665 (2023).
Clark, K. et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013).
pubmed: 23884657 pmcid: 3824915 doi: 10.1007/s10278-013-9622-7
Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015).
pubmed: 25494501 doi: 10.1109/TMI.2014.2377694
Therapeutically applicable research to generate effective treatments (TARGET) - NCI. https://www.cancer.gov/ccg/research/genome-sequencing/target .
GDC. https://portal.gdc.cancer.gov/ .
Welcome to the cancer imaging archive - the cancer imaging archive (TCIA). https://www.cancerimagingarchive.net/ .
Xia, M., Wang, J. & He, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One 8, e68910 (2013).
pubmed: 23861951 pmcid: 3701683 doi: 10.1371/journal.pone.0068910
Sun, L., Zhang, S., Chen, H. & Luo, L. Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, 810 (2019).
pubmed: 31474816 pmcid: 6707136 doi: 10.3389/fnins.2019.00810
Feng, X., Tustison, N. J., Patel, S. H. & Meyer, C. H. Brain tumor segmentation using an ensemble of 3D U-nets and overall survival prediction using radiomic features. Front. Comput. Neurosci. 14, 25 (2020).
pubmed: 32322196 pmcid: 7158872 doi: 10.3389/fncom.2020.00025
ZainEldin, H. et al. Brain tumor detection and classification using deep learning and sine-cosine fitness grey wolf optimization. Bioengineering 10, 1–19 (2023).
Latif, G., Iskandar, D. N. F. A., Alghazo, J. & Butt, M. M. Brain MR image classification for glioma tumor detection using deep convolutional neural network features. Curr. Med. imaging 17, 56–63 (2021).
pubmed: 32160848
Saeedi, S., Rezayi, S., Keshavarz, H. & R. Niakan Kalhori, S. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Med. Inform. Decis. Mak. 23, 16 (2023).
pubmed: 36691030 pmcid: 9872362 doi: 10.1186/s12911-023-02114-6
Bhandari, A., Koppen, J. & Agzarian, M. Convolutional neural networks for brain tumour segmentation. Insights Imaging 11, 77 (2020).
pubmed: 32514649 pmcid: 7280397 doi: 10.1186/s13244-020-00869-4
Chen, S., Ding, C. & Liu, M. Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recognit. 88, 90–100 (2019).
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021).
pubmed: 33288961 doi: 10.1038/s41592-020-01008-z
Steyaert, S. et al. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors. Commun. Med. 3, 44 (2023).
pubmed: 36991216 pmcid: 10060397 doi: 10.1038/s43856-023-00276-y
Kamnitsas, K. et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017).
pubmed: 27865153 doi: 10.1016/j.media.2016.10.004
Milletari, F., Navab, N. & Ahmadi, S. A. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 565–571 (2016).
https://www.cancer.org/cancer/types/brain-spinal-cord-tumors-adults/detection-diagnosis-staging/how-diagnosed.html Tests for Brain and Spinal Cord Tumors in Adults.
Nasrallah, M. P. et al. Molecular neuropathology in practice: clinical profiling and integrative analysis of molecular alterations in glioblastoma. Acad. Pathol. 6, 2374289519848353 (2019).
Afridi, M., Jain, A., Aboian, M. & Payabvash, S. Brain tumor imaging: applications of artificial intelligence. Semin. Ultrasound Ct. MR 43, 153–169 (2022).
pubmed: 35339256 pmcid: 8961005 doi: 10.1053/j.sult.2022.02.005
Ellingson, B. M., Wen, P. Y., Van Den Bent, M. J. & Cloughesy, T. F. Pros and cons of current brain tumor imaging. Neuro. Oncol. 16, vii2 (2014).
pubmed: 25313235 pmcid: 4195528 doi: 10.1093/neuonc/nou224
Ghandour, F. et al. Presenting psychiatric and neurological symptoms and signs of brain tumors before diagnosis: a systematic review. Brain Sci. 11, 1–20 (2021).
doi: 10.3390/brainsci11030301
Grant, R. et al. Interventions to reduce the time to diagnosis of brain tumours. Cochrane Database Syst. Rev. 9, CD013564 (2020).
pubmed: 32901926
Iijima, K. et al. Microrecording and image-guided stereotactic biopsy of deep-seated brain tumors. J. Neurosurg. 123, 978–988 (2015).
pubmed: 25816085 doi: 10.3171/2014.10.JNS14963
Luo, Q., Li, Y., Luo, L. & Diao, W. Comparisons of the accuracy of radiation diagnostic modalities in brain tumor: a nonrandomized, nonexperimental, cross-sectional trial. Med. 97, e11256 (2018).
doi: 10.1097/MD.0000000000011256
Histed, S. N. et al. Review of functional/ anatomic imaging in oncology. Nucl. Med. Commun. 33, 349 (2012).
pubmed: 22314804 pmcid: 3295905 doi: 10.1097/MNM.0b013e32834ec8a5
Riche, M. et al. Complications after frame-based stereotactic brain biopsy: a systematic review. Neurosurg. Rev. 44, 301–307 (2021).
pubmed: 31900737 doi: 10.1007/s10143-019-01234-w
Keane, L., Cheray, M., Blomgren, K. & Joseph, B. Multifaceted microglia - key players in primary brain tumour heterogeneity. Nat. Rev. Neurol. 17, 243–259 (2021).
pubmed: 33692572 doi: 10.1038/s41582-021-00463-2
Martucci, M. et al. Magnetic resonance imaging of primary adult brain tumors: state of the art and future perspectives. Biomedicines 11, 364 (2023).
pubmed: 36830900 pmcid: 9953338 doi: 10.3390/biomedicines11020364
Zhang, B., Shi, H. & Wang, H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach. J. Multidiscip. Healthc. 16, 1779–1791 (2023).
Bauer, A. H., Erly, W., Moser, F. G., Maya, M. & Nael, K. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology 57, 697–703 (2015).
pubmed: 25845813 doi: 10.1007/s00234-015-1524-6
Voicu, I. P. et al. Differentiating solitary brain metastases from high-grade gliomas with MR: comparing qualitative versus quantitative diagnostic strategies. Radiol. Med. 127, 891–898 (2022).
pubmed: 35763250 pmcid: 9349158 doi: 10.1007/s11547-022-01516-2
Kunimatsu, A. et al. Texture analysis in brain tumor MR imaging. Magn. Reson. Med. Sci. 21, 95–109 (2022).
pubmed: 33692222 doi: 10.2463/mrms.rev.2020-0159
Soni, X. N., Priya, S. & Bathla, X. G. Texture analysis in cerebral gliomas: a review of the literature. AJNR Am. J. Neuroradiol. 40, 928 (2019).
pubmed: 31122918 pmcid: 7028605 doi: 10.3174/ajnr.A6075
Bharath, K., Kurtek, S., Rao, A. & Baladandayuthapani, V. Radiologic image-based statistical shape analysis of brain tumours. J. R. Stat. Soc. Ser. C. Appl. Stat. 67, 1357–1378 (2018).
pubmed: 30420787 pmcid: 6225782 doi: 10.1111/rssc.12272
Rajan, P. G. & Sundar, C. Brain tumor detection and segmentation by intensity adjustment. J. Med. Syst. 43, 282 (2019).
pubmed: 31300899 doi: 10.1007/s10916-019-1368-4
Kader et al. Brain tumor detection and classification on MR images by a deep wavelet auto-encoder model. Diagnostics 11, 1589 (2021).
pubmed: 34573931 doi: 10.3390/diagnostics11091589
Nie, D. et al. Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 9, 1–14 (2019).
doi: 10.1038/s41598-018-37387-9
Srinivas, C. et al. Deep transfer learning approaches in performance analysis of brain tumor classification using MRI images. J. Healthc. Eng. 2022, 3264367 (2022).
pubmed: 35299683 pmcid: 8923754 doi: 10.1155/2022/3264367
Ali, H. et al. The role of generative adversarial networks in brain MRI: a scoping review. Insights Imaging 13, 98 (2022).
pubmed: 35662369 pmcid: 9167371 doi: 10.1186/s13244-022-01237-0
Guo, W. et al. Multiparametric MRI-based radiomics model for predicting H3 K27M mutant status in diffuse midline glioma: a comparative study across different sequences and machine learning techniques. Front. Oncol. 12, 796583 (2022).
pubmed: 35311083 pmcid: 8928064 doi: 10.3389/fonc.2022.796583
Kihira, S. et al. Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion. Neuro-Oncol. Adv. 3, vdab051 (2021).
doi: 10.1093/noajnl/vdab051
Schepke, E. et al. DNA methylation profiling improves routine diagnosis of paediatric central nervous system tumours: a prospective population-based study. Neuropathol. Appl. Neurobiol. 48, e12838 (2022).
pubmed: 35892159 pmcid: 9543790 doi: 10.1111/nan.12838
Hollon, T. et al. Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging. Nat. Med. 29, 828–832 (2023).
pubmed: 36959422 pmcid: 10445531 doi: 10.1038/s41591-023-02252-4
Kim, M. et al. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur. Radiol. 30, 2142–2151 (2020).
pubmed: 31828414 doi: 10.1007/s00330-019-06548-3
Sun, Z. et al. Prediction of IDH mutation status of glioma based on terahertz spectral data. Spectrochim. Acta A Mol. Biomol. Spectrosc. 295, 122629 (2023).
pubmed: 36958244 doi: 10.1016/j.saa.2023.122629
Hajri, R., Nicod-Lalonde, M., Hottinger, A. F., Prior, J. O. & Dunet, V. Prediction of glioma grade and IDH status using 18F-FET PET/CT dynamic and multiparametric texture analysis. Diagnostics 13, 2604 (2023).
pubmed: 37568967 pmcid: 10417545 doi: 10.3390/diagnostics13152604
Yan, J. et al. Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study. Lab. Investig. 102, 154–159 (2022).
pubmed: 34782727 doi: 10.1038/s41374-021-00692-5
Murdaugh, R. L. & Anastas, J. N. Applying single cell multi-omic analyses to understand treatment resistance in pediatric high grade glioma. Front. Pharmacol. 14, 1002296 (2023).
Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3, e3088 (2008).
pubmed: 18769486 pmcid: 2518524 doi: 10.1371/journal.pone.0003088
Bender, K. et al. High-grade astrocytoma with piloid features (HGAP): the Charité experience with a new central nervous system tumor entity. J. Neurooncol. 153, 109–120 (2021).
pubmed: 33905054 pmcid: 8131327 doi: 10.1007/s11060-021-03749-z
Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Neuro. Oncol. 622, 842–849 (2023).
Rees, J. H. Diagnosis and treatment in neuro-oncology: an oncological perspective. Br. J. Radiol. 84, S82–S89 (2011).
pubmed: 22433832 doi: 10.1259/bjr/18061999
Mariotto, A. B. et al. Cancer survival: an overview of measures, uses, and interpretation. J. Natl Cancer Inst. Monogr. 2014, 145–186 (2014).
pubmed: 25417231 pmcid: 4829054 doi: 10.1093/jncimonographs/lgu024
Kickingereder, P. et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280, 880–889 (2016).
pubmed: 27326665 doi: 10.1148/radiol.2016160845
Prasanna, P., Patel, J., Partovi, S., Madabhushi, A. & Tiwari, P. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur. Radiol. 27, 4198–4199 (2017).
pubmed: 28608160 doi: 10.1007/s00330-017-4815-y
Kickingereder, P. et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro. Oncol. 20, 848–857 (2018).
pubmed: 29036412 doi: 10.1093/neuonc/nox188
Kim, J. Y. et al. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma. Neuroradiology 61, 1261–1272 (2019).
pubmed: 31289886 doi: 10.1007/s00234-019-02255-4
Li, G. et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain 145, 1151–1161 (2022).
pubmed: 35136934 pmcid: 9050568 doi: 10.1093/brain/awab340
Iyer, S. et al. Novel MRI deformation-heterogeneity radiomic features are associated with molecular subgroups and overall survival in pediatric medulloblastoma: preliminary findings from a multi-institutional study. Front. Oncol. 12, 915143 (2022).
pubmed: 36620600 pmcid: 9811390 doi: 10.3389/fonc.2022.915143
Long, H. et al. MRI radiomic features of peritumoral edema may predict the recurrence sites of glioblastoma multiforme. Front. Oncol. 12, 1042498 (2023).
Zhou, T. et al. Prediction of brain tumor recurrence location based on multi-modal fusion and nonlinear correlation learning. Comput. Med. Imaging Graph. 106, 102218 (2023).
pubmed: 36947921 doi: 10.1016/j.compmedimag.2023.102218
Śledzińska, P., Bebyn, M. G., Furtak, J., Kowalewski, J. & Lewandowska, M. A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci. 22, 10373 (2021).
Wang, C., Zhu, X., Hong, J. C. & Zheng, D. Artificial intelligence in radiotherapy treatment planning: present and future. Technol. Cancer Res. Treat. 18, https://doi.org/10.1177/1533033819873922 (2019).
Creasy, J. M. et al. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases. Eur. Radiol. 29, 458–467 (2019).
pubmed: 29922934 doi: 10.1007/s00330-018-5542-8
Kawahara, D., Tang, X., Lee, C. K., Nagata, Y. & Watanabe, Y. Predicting the local response of metastatic brain tumor to gamma knife radiosurgery by radiomics with a machine learning method. Front. Oncol. 10, 569461 (2021).
Wang, Y. et al. The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study. Eur. Radiol. 32, 8737–8747 (2022).
pubmed: 35678859 doi: 10.1007/s00330-022-08887-0
Yang, Y. et al. Spatial heterogeneity of edema region uncovers survival-relevant habitat of Glioblastoma. Eur. J. Radiol. 154, 110423 (2022).
Do, D. T., Yang, M. R., Lam, L. H. T., Le, N. Q. K. & Wu, Y. W. Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Sci. Rep. 12, 13412 (2022).
Boehm, K. M. & Khosravi, P. Harnessing multimodal data integration to advance precision oncology. 22, 114–126 (2022).
Cè, M. et al. Artificial intelligence in brain tumor imaging: a step toward personalized medicine. Curr. Oncol. 30, 2673–2701 (2023).
pubmed: 36975416 pmcid: 10047107 doi: 10.3390/curroncol30030203
Midya, A., Chakraborty, J., Gönen, M., Do, R. K. G. & Simpson, A. L. Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. J. Med. Imaging 5, 011020 (2018).
Zwanenburg, A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging 46, 2638–2655 (2019).
Lambin, P. et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).
Park, J. E. et al. A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC Cancer 20, 29 (2020).
Ambe, S. et al. Racial disparities in malignant primary brain tumor survival in Texas from 1995 to 2013. Cureus 12, e11710 (2020)
Butterfield, J. T. et al. Racial disparities in recommendations for surgical resection of primary brain tumours: a registry-based cohort analysis. Lancet 400, 2063–2073 (2022).
pubmed: 36502844 doi: 10.1016/S0140-6736(22)00839-X
Carrano, A., Juarez, J. J., Incontri, D., Ibarra, A. & Cazares, H. G. Sex-specific differences in glioblastoma. Cells 10, 1783 (2021).
Shreve, J. T., Khanani, S. A. & Haddad, T. C. Artificial intelligence in oncology: current capabilities, future opportunities, and ethical considerations. Am. Soc. Clin. Oncol. Educ. B. 42, 1–10 (2022)
Naik, N. et al. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front. Surg. 9, 862322 (2022).
pubmed: 35360424 pmcid: 8963864 doi: 10.3389/fsurg.2022.862322
Amann, J., Blasimme, A., Vayena, E., Frey, D. & Madai, V. I. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20, 310 (2020).
Holzinger, A., Langs, G., Denk, H., Zatloukal, K. & Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9, e1312 (2019).
DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D. & Winans, P. Functional magnetic resonance imaging (FMRI) of the human brain. J. Neurosci. Methods 54, 171–187 (1994).
pubmed: 7869750 doi: 10.1016/0165-0270(94)90191-0
Assaf, Y. & Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34, 51–61 (2008).
pubmed: 18157658 doi: 10.1007/s12031-007-0029-0
Singh, N. M. et al. Data consistent deep rigid MRI motion correction. https://arxiv.org/abs/2301.10365 (2023).
Chen, Z. et al. Deep learning for image enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J. Digit. Imaging 36, 204 (2023).
pubmed: 36323914 doi: 10.1007/s10278-022-00721-9
Han, K. et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45, 87–110 (2022).
Asiri, A. A. et al. Exploring the power of deep learning: fine-tuned vision transformer for accurate and efficient brain tumor detection in MRI scans. Diagnostics 13, 2094 (2023).
pubmed: 37370989 pmcid: 10297056 doi: 10.3390/diagnostics13122094
Huang, L. et al. A transformer-based generative adversarial network for brain tumor segmentation. Front. Neurosci. 16, 1054948 (2022).
Saueressig, C., Berkley, A., Kang, E., Munbodh, R. & Singh, R. Exploring graph-based neural networks for automatic brain tumor segmentation. Lect. Notes Comput. Sci. 12611, 18–37 (2021).
doi: 10.1007/978-3-030-70650-0_2
Ravinder, M. et al. Enhanced brain tumor classification using graph convolutional neural network architecture. Sci. Rep. 13, 1–22 (2023).
doi: 10.1038/s41598-023-41407-8
Zeineldin, R. A. et al. Explainability of deep neural networks for MRI analysis of brain tumors. Int. J. Comput. Assist. Radiol. Surg. 17, 1673–1683 (2022).
Esmaeili, M., Vettukattil, R., Banitalebi, H., Krogh, N. R. & Geitung, J. T. Explainable artificial intelligence for human-machine interaction in brain tumor localization. J. Pers. Med. 11, 1213 (2021).
pubmed: 34834566 pmcid: 8618183 doi: 10.3390/jpm11111213
Ogier du Terrail, J. et al. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nat. Med. 29, 135–146 (2023).
pubmed: 36658418 doi: 10.1038/s41591-022-02155-w
Nasrallah, M. P. et al. Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma. Med 4, 526-540.e4 (2023).
Romano, M. F., Shih, L. C., Paschalidis, I. C., Au, R. & Kolachalama, V. B. Large language models in neurology research and future practice. Neurology 101, 1058–1067 (2023).
pubmed: 37816646 pmcid: 10752640 doi: 10.1212/WNL.0000000000207967

Auteurs

Sirvan Khalighi (S)

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

Kartik Reddy (K)

Department of Radiology, Emory University, Atlanta, GA, USA.

Abhishek Midya (A)

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

Krunal Balvantbhai Pandav (KB)

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

Anant Madabhushi (A)

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. Anant.Madabhushi@emory.edu.
Atlanta Veterans Administration Medical Center, Atlanta, GA, USA. Anant.Madabhushi@emory.edu.

Malak Abedalthagafi (M)

Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA. Malak.althgafi@emory.edu.
The Cell and Molecular Biology Program, Winship Cancer Institute, Atlanta, GA, USA. Malak.althgafi@emory.edu.

Classifications MeSH