Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data.

gradient boosting machine learning miRNA transcriptome

Journal

Doklady. Biochemistry and biophysics
ISSN: 1608-3091
Titre abrégé: Dokl Biochem Biophys
Pays: United States
ID NLM: 101126895

Informations de publication

Date de publication:
27 Mar 2024
Historique:
received: 28 12 2023
accepted: 03 02 2024
revised: 25 01 2024
medline: 28 3 2024
pubmed: 28 3 2024
entrez: 28 3 2024
Statut: aheadofprint

Résumé

Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.

Identifiants

pubmed: 38539010
doi: 10.1134/S1607672924700790
pii: 10.1134/S1607672924700790
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Pleiades Publishing, Ltd.

Références

Lorenzi, L. et al., The RNA Atlas expands the catalog of human non-coding RNAs, Nat. Biotechnol., 2021, vol. 39, no. 11, pp. 1453–1465. https://doi.org/10.1038/s41587-021-00936-1
doi: 10.1038/s41587-021-00936-1 pubmed: 34140680
Jens, M. and Rajewsky, N., Competition between target sites of regulators shapes post-transcriptional gene regulation, Nat. Rev. Genet., 2015, vol. 16, no. 2, pp. 113–126. https://doi.org/10.1038/nrg3853
doi: 10.1038/nrg3853 pubmed: 25488579
Lee, Y.S. and Dutta, A., MicroRNAs in cancer, Annu. Rev. Pathol. Mech. Dis., 2009, vol. 4, no. 1, pp. 199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222
doi: 10.1146/annurev.pathol.4.110807.092222
Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T., Identification of Novel Genes Coding for Small Expressed RNAs, Science, 2001, vol. 294, no. 5543, pp. 853–858. https://doi.org/10.1126/science.1064921
doi: 10.1126/science.1064921 pubmed: 11679670
Ferraro, A. et al., Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGB4-PDCD4) as predictor of metastatic tumor potential, Epigenetics, 2014, vol. 9, no. 1, pp. 129–141. https://doi.org/10.4161/epi.26842
doi: 10.4161/epi.26842 pubmed: 24149370
Kumarswamy, R., Volkmann, I., and Thum, T., Regulation and function of miRNA-21 in health and disease, RNA Biol., 2011, vol. 8, no. 5, pp. 706–713. https://doi.org/10.4161/rna.8.5.16154
doi: 10.4161/rna.8.5.16154 pubmed: 21712654 pmcid: 3256347
Zhao, Q. et al., miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2, Cell Death Dis., 2018, vol. 9, no. 12, p. 1157. https://doi.org/10.1038/s41419-018-1182-9
doi: 10.1038/s41419-018-1182-9 pubmed: 30464258 pmcid: 6249286
Yang, Y. et al., Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4, Cancer Gene Ther., 2015, vol. 22, no. 1, pp. 23–29. https://doi.org/10.1038/cgt.2014.66
doi: 10.1038/cgt.2014.66 pubmed: 25477028
Xu, L., Wu, Z., Chen, Y., Zhu, Q., Hamidi, S., and Navab, R., MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK, and Bcl-2 in lung squamous carcinoma, gejiu city, china, PLoS One, 2014, vol. 9, no. 8, p. e103698. https://doi.org/10.1371/journal.pone.0103698
doi: 10.1371/journal.pone.0103698 pubmed: 25084400 pmcid: 4118890
Martin Del Campo, S.E. et al., MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of  metalloproteinases 3 expression: in vivo effects of miR-21 inhibitor, PLoS One, 2015, vol. 10, no. 1, p. e0115919. https://doi.org/10.1371/journal.pone.0115919
doi: 10.1371/journal.pone.0115919 pubmed: 25587717 pmcid: 4294659
Meng, F., Henson, R., Wehbe–Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer, Gastroenterology, 2007, vol. 133, no. 2, pp. 647–658. https://doi.org/10.1053/j.gastro.2007.05.022
doi: 10.1053/j.gastro.2007.05.022 pubmed: 17681183
Hatley, M.E. et al., Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21, Cancer Cell, 2010, vol. 18, no. 3, pp. 282–293. https://doi.org/10.1016/j.ccr.2010.08.013
doi: 10.1016/j.ccr.2010.08.013 pubmed: 20832755 pmcid: 2971666
Lee, H., Han, S., Kwon, C.S., and Lee, D., Biogenesis and regulation of the let-7 miRNAs and their functio-nal implications, Protein Cell, 2016, vol. 7, no. 2, pp. 100–113. https://doi.org/10.1007/s13238-015-0212-y
doi: 10.1007/s13238-015-0212-y pubmed: 26399619
Balzeau, J., Menezes, M.R., Cao, S., and Hagan, J.P., The LIN28/let-7 pathway in cancer, Front. Genet., 2017, vol. 8. https://doi.org/10.3389/fgene.2017.00031
Yu, F. et al., Let-7 regulates self renewal and tumorigenicity of breast cancer cells, Cell, 2007, vol. 131, no. 6, pp. 1109–1123. https://doi.org/10.1016/j.cell.2007.10.054
doi: 10.1016/j.cell.2007.10.054 pubmed: 18083101
Kallen, A.N. et al., The imprinted H19 LncRNA antagonizes let-7 microRNAs, Mol. Cell, 2013, vol. 52, no. 1, pp. 101–112. https://doi.org/10.1016/j.molcel.2013.08.027
doi: 10.1016/j.molcel.2013.08.027 pubmed: 24055342
Cai, W.-Y. et al., Wnt/β-catenin pathway represses let-7 microRNAs expression via transactivation of Lin28 to augment breast cancer stem cell expansion, J. Cell Sci., 2013, p. jcs.123810. https://doi.org/10.1242/jcs.123810
Liang, R. et al., MiR-146a promotes the asymmetric division and inhibits the self-renewal ability of breast cancer stem-like cells via indirect upregulation of Let-7, Cell Cycle, 2018, vol. 17, no. 12, pp. 1445–1456. https://doi.org/10.1080/15384101.2018.1489176
doi: 10.1080/15384101.2018.1489176 pubmed: 29954239 pmcid: 6986760
Bao, B. et al., Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells, Cancer Prev. Res. (Phila. Pa.), 2012, vol. 5, no. 3, pp. 355–364. https://doi.org/10.1158/1940-6207.CAPR-11-0299
Luo, G. et al., Highly lymphatic metastatic pancreatic cancer cells possess stem cell-like properties, Int. J. Oncol., 2013, vol. 42, no. 3, pp. 979–984. https://doi.org/10.3892/ijo.2013.1780
doi: 10.3892/ijo.2013.1780 pubmed: 23338123
Ahmad, A. et al., Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs, J. Hematol. Oncol., 2013, vol. 6, no. 1, p. 77. https://doi.org/10.1186/1756-8722-6-77
doi: 10.1186/1756-8722-6-77 pubmed: 24199791 pmcid: 3852827
Alam, M., Ahmad, R., Rajabi, H., and Kufe, D., MUC1-C induces the LIN28B→LET-7→HMGA2 axis to regulate self-renewal in NSCLC, Mol. Cancer Res., 2015, vol. 13, no. 3, pp. 449–460. https://doi.org/10.1158/1541-7786.MCR-14-0363
doi: 10.1158/1541-7786.MCR-14-0363 pubmed: 25368430
Guo, L. et al., Stat3-coordinated Lin-28–let-7–HMGA2 and miR-200–ZEB1 circuits initiate and maintain oncostatin M-driven epithelial–mesenchymal transition, Oncogene, 2013, vol. 32, no. 45, pp. 5272–5282. https://doi.org/10.1038/onc.2012.573
doi: 10.1038/onc.2012.573 pubmed: 23318420
Jiang, R. et al., The acquisition of cancer stem cell-like properties and neoplastic transformation of human keratinocytes induced by arsenite involves epigenetic silencing of let-7c via Ras/NF-κB, Toxicol. Lett., 2014, vol. 227, no. 2, pp. 91–98. https://doi.org/10.1016/j.toxlet.2014.03.020
doi: 10.1016/j.toxlet.2014.03.020 pubmed: 24704393
Appari, M., Babu, K.R., Kaczorowski, A., Gros, W., and Her, I., Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition, Int. J. Oncol., 2014, vol. 45, no. 4, pp. 1391–1400. https://doi.org/10.3892/ijo.2014.2539
doi: 10.3892/ijo.2014.2539 pubmed: 25017900 pmcid: 4151818
Ma, X. et al., Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1, Nat. Commun., 2014, vol. 5, no. 1, p. 5212. https://doi.org/10.1038/ncomms6212
doi: 10.1038/ncomms6212 pubmed: 25301052
Zhang, Y. et al., Lin28 enhances de novo fatty acid synthesis to promote cancer progression via SREBP-1, EMBO Rep., 2019, vol. 20, no. 10, p. e48115. https://doi.org/10.15252/embr.201948115
doi: 10.15252/embr.201948115 pubmed: 31379107 pmcid: 6776893
Zhou, J. et al., Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia, J. Hematol. Oncol., 2017, vol. 10, no. 1, p. 138. https://doi.org/10.1186/s13045-017-0507-y
doi: 10.1186/s13045-017-0507-y pubmed: 28693523 pmcid: 5504806
Ke, G. et al., LightGBM: a highly efficient gradient boosting decision tree, in Proc. 31st Int. Conf. on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA: Curran Associates Inc., 2017, pp. 3149–3157.
Pedregosa, F. et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.
Harris, C.R. et al., Array programming with NumPy, Nature, 2020, vol. 585, no. 7825, pp. 357–362. https://doi.org/10.1038/s41586-020-2649-2
doi: 10.1038/s41586-020-2649-2 pubmed: 32939066 pmcid: 7759461
Inc, P.T., Collaborative data science. https://plot.ly
Yang, Y. et al., A comprehensive pan-cancer analysis on the immunological role and prognostic value of TYMP in human cancers, Transl. Cancer Res., 2022, vol. 11, no. 9, pp. 3187–3208. https://doi.org/10.21037/tcr-22-502
doi: 10.21037/tcr-22-502 pubmed: 36237259 pmcid: 9552085
Blum, A.E. et al., RNA sequencing identifies transcriptionally viable gene fusions in esophageal adenocarcinomas, Cancer Res., 2016, vol. 76, no. 19, pp. 5628–5633. https://doi.org/10.1158/0008-5472.CAN-16-0979
doi: 10.1158/0008-5472.CAN-16-0979 pubmed: 27503924 pmcid: 5050127
Vaccaro, M.I., Mitchell, F., Rivera, F., and Gonza-lez, C.D., Protein expression in exocrine pancreatic diseases. Focus on VMP1 mediated autophagy, in Advances in Protein Chemistry and Structural Biology, Elsevier, 2022, vol. 132, pp. 175–197. https://doi.org/10.1016/bs.apcsb.2022.07.001
Fang, L. et al., PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway, Cell Death Discovery, 2021, vol. 7, no. 1, p. 32. https://doi.org/10.1038/s41420-021-00410-6
doi: 10.1038/s41420-021-00410-6 pubmed: 33574243 pmcid: 7878926
Roberts, A.G.K., Catchpoole, D.R., and Kennedy, P.J., Identification of differentially distributed gene expression and distinct sets of cancer-related genes identified by changes in mean and variability, NAR Genomics Bioinf., 2022, vol. 4, no. 1, p. lqab124. https://doi.org/10.1093/nargab/lqab124
Fancello, L., Kampen, K.R., Hofman, I.J.F., Verbeeck, J., and Keersmaecker, K.D., The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types, Oncotarget, 2017, vol. 8, no. 9, pp. 14462–14478. https://doi.org/10.18632/oncotarget.14895
doi: 10.18632/oncotarget.14895 pubmed: 28147343 pmcid: 5362418
Malgundkar, S.H. et al., Identification and validation of a novel long non-coding RNA (LINC01465) in ovarian cancer, Hum. Cell, 2022, vol. 36, no. 2, pp. 762–774. https://doi.org/10.1007/s13577-022-00842-x
doi: 10.1007/s13577-022-00842-x pubmed: 36513868
Ji, Z. et al., C-Myc-activated long non-coding RNA LINC01050 promotes gastric cancer growth and metastasis by sponging miR-7161-3p to regulate SPZ1 expression, J. Exp. Clin. Cancer Res., 2021¸ vol. 40, no. 1, p. 351. https://doi.org/10.1186/s13046-021-02155-7
Gao, L. et al., Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing, Int. J. Cancer, 2015, vol. 136, no. 6. https://doi.org/10.1002/ijc.29169
Zhang, H. et al., FBXO7, a tumor suppressor in endometrial carcinoma, suppresses INF2-associated mitochondrial division, Cell Death Dis., 2023, vol. 14, no. 6, p. 368. https://doi.org/10.1038/s41419-023-05891-0
doi: 10.1038/s41419-023-05891-0 pubmed: 37344480 pmcid: 10284917
Okada, Y. et al., Homeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene, Blood, 2003, vol. 101, no. 12, pp. 4748–4756. https://doi.org/10.1182/blood-2002-02-0380
doi: 10.1182/blood-2002-02-0380 pubmed: 12609849
Ali, A. et al., Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC, FEBS Open Bio, 2021, vol. 11, no. 11, pp. 3101–3114. https://doi.org/10.1002/2211-5463.13303
doi: 10.1002/2211-5463.13303 pubmed: 34551213 pmcid: 8564339
Meng, L., Zhang, Q., and Huang, X., Abnormal 5-methylcytosine lncRNA methylome is involved in human high-grade serous ovarian cancer, Am. J. Transl. Res., 2021, vol. 13, no. 12, pp. 13625–13639.
pubmed: 35035702 pmcid: 8748087
Lu, L. et al., The long non-coding RNA RHPN1-AS1 promotes uveal melanoma progression, Int. J. Mol. Sci., 2017, vol. 18, no. 1, p. 226. https://doi.org/10.3390/ijms18010226
doi: 10.3390/ijms18010226 pubmed: 28124977 pmcid: 5297855
Wang, J. et al., Long non-coding RNA RHPN1-AS1 promotes tumorigenesis and metastasis of ovarian cancer by acting as a ceRNA against miR-596 and upregulating LETM1, Aging, 2020, vol. 12, no. 5, pp. 4558–4572. https://doi.org/10.18632/aging.102911
doi: 10.18632/aging.102911 pubmed: 32163372 pmcid: 7093190
Qian, Y., Shi, L., and Luo, Z., Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy, Front. Med., 2020, vol. 7, p. 612393. https://doi.org/10.3389/fmed.2020.612393
doi: 10.3389/fmed.2020.612393
Chen, X. and Sun, Z., Novel lincRNA discovery and tissue-specific gene expression across 30 normal human tissues, Genes, 2021, vol. 12, no. 5, p. 614. https://doi.org/10.3390/genes12050614
doi: 10.3390/genes12050614 pubmed: 33919168 pmcid: 8143134

Auteurs

Ya V Solovev (YV)

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. solovev@ibch.ru.

A S Evpak (AS)

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. solovev@ibch.ru.

A A Kudriaeva (AA)

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

A G Gabibov (AG)

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Moscow State University, Moscow, Russia.

A A Belogurov (AA)

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia.

Classifications MeSH