Targeting DCAF5 suppresses SMARCB1-mutant cancer by stabilizing SWI/SNF.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
27 Mar 2024
27 Mar 2024
Historique:
received:
18
10
2022
accepted:
28
02
2024
medline:
28
3
2024
pubmed:
28
3
2024
entrez:
28
3
2024
Statut:
aheadofprint
Résumé
Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project
Identifiants
pubmed: 38538798
doi: 10.1038/s41586-024-07250-1
pii: 10.1038/s41586-024-07250-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).
pubmed: 33753930
pmcid: 8049517
doi: 10.1038/s41588-021-00819-w
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).
pubmed: 26780180
pmcid: 4744125
doi: 10.1038/nbt.3437
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).
pubmed: 29083409
pmcid: 5709193
doi: 10.1038/ng.3984
Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).
pubmed: 32303701
pmcid: 8723792
doi: 10.1038/s41571-020-0357-3
Zhu, Z. et al. Mitotic bookmarking by SWI/SNF subunits. Nature 618, 180–187 (2023).
pubmed: 37225980
pmcid: 10303083
doi: 10.1038/s41586-023-06085-6
Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).
pubmed: 27941797
doi: 10.1038/ng.3746
Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).
pubmed: 28945250
pmcid: 5803080
doi: 10.1038/ng.3958
Alver, B. H. et al. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8, 14648 (2017).
pubmed: 28262751
pmcid: 5343482
doi: 10.1038/ncomms14648
Valencia, A. M. et al. Recurrent SMARCB1 mutations reveal a nucleosome acidic patch interaction site that potentiates mSWI/SNF complex chromatin remodeling. Cell 179, 1342–1356 (2019).
pubmed: 31759698
pmcid: 7175411
doi: 10.1016/j.cell.2019.10.044
Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).
pubmed: 9671307
doi: 10.1038/28212
Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012).
pubmed: 22797305
pmcid: 3408754
doi: 10.1172/JCI64400
Le Loarer, F. et al. Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material. Genes Chromosomes Cancer 53, 475–486 (2014).
pubmed: 24585572
pmcid: 4226650
doi: 10.1002/gcc.22159
Roberts, C. W. M., Leroux, M. M., Fleming, M. D. & Orkin, S. H. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2, 415–425 (2002).
pubmed: 12450796
doi: 10.1016/S1535-6108(02)00185-X
Leng, F. et al. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4
pubmed: 29691401
pmcid: 5915600
doi: 10.1038/s41467-018-04019-9
Zhang, C. X. et al. Proteolysis of methylated SOX2 protein is regulated by L3MBTL3 and CRL4
pubmed: 30442713
doi: 10.1074/jbc.RA118.005336
He, Y. Z. J., McCall, C. M., Hu, J., Zeng, Y. X. & Xiong, Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 20, 2949–2954 (2006).
pubmed: 17079684
pmcid: 1620025
doi: 10.1101/gad.1483206
Lee, J. & Zhou, P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775–780 (2007).
pubmed: 17588513
doi: 10.1016/j.molcel.2007.06.001
Ahn, J. et al. The cullin-RING E3 ubiquitin ligase CRL4-DCAF1 complex dimerizes via a short helical region in DCAF1. Biochemistry 50, 1359–1367 (2011).
pubmed: 21226479
doi: 10.1021/bi101749s
Angers, S. et al. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).
pubmed: 16964240
doi: 10.1038/nature05175
Wang, X. et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1881 (2019).
pubmed: 31015438
pmcid: 6479050
doi: 10.1038/s41467-019-09891-7
Shabek, N. et al. Structural insights into DDA1 function as a core component of the CRL4-DDB1 ubiquitin ligase. Cell Discov. 4, 67 (2018).
pubmed: 30564455
pmcid: 6288126
doi: 10.1038/s41421-018-0064-8
Li, T., Robert, E. I., van Breugel, P. C., Strubin, M. & Zheng, N. A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol. 17, 105–111 (2010).
pubmed: 19966799
doi: 10.1038/nsmb.1719
Wang, X. F. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Cancer. Res. https://doi.org/10.1158/1538-7445.Am2017-Lb-096 (2017).
Alpsoy, A. & Dykhuizen, E. C. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J. Biol. Chem. 293, 3892–3903 (2018).
pubmed: 29374058
pmcid: 5858003
doi: 10.1074/jbc.RA117.001065
Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).
pubmed: 30397315
pmcid: 6698386
doi: 10.1038/s41556-018-0221-1
Guo, P. et al. The assembly of mammalian SWI/SNF chromatin remodeling complexes is regulated by lysine-methylation dependent proteolysis. Nat. Commun. 13, 6696 (2022).
pubmed: 36335117
pmcid: 9637158
doi: 10.1038/s41467-022-34348-9
Nabet, B. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat. Commun. 11, 4687 (2020).
pubmed: 32948771
pmcid: 7501296
doi: 10.1038/s41467-020-18377-w
Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).
pubmed: 29581585
pmcid: 6295913
doi: 10.1038/s41589-018-0021-8
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 (2018).
pubmed: 30343899
pmcid: 6791824
doi: 10.1016/j.cell.2018.09.032
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).
pubmed: 12872131
doi: 10.1038/nbt849
Langer, L. F., Ward, J. M. & Archer, T. K. Tumor suppressor SMARCB1 suppresses super-enhancers to govern hESC lineage determination. eLife 8, e45672 (2019).
pubmed: 31033435
pmcid: 6538374
doi: 10.7554/eLife.45672
Huang, Z. Q., Li, J., Sachs, L. M., Cole, P. A. & Wong, J. A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 22, 2146–2155 (2003).
pubmed: 12727881
pmcid: 156091
doi: 10.1093/emboj/cdg219
Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).
pubmed: 33558760
pmcid: 7614082
doi: 10.1038/s41588-021-00777-3
Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817 (2020).
pubmed: 33053319
pmcid: 7717177
doi: 10.1016/j.cell.2020.09.051
Phelan, M. L., Sif, S., Narlikar, G. J. & Kingston, R. E. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3, 247–253 (1999).
pubmed: 10078207
doi: 10.1016/S1097-2765(00)80315-9
Wolf, B. K. et al. Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor AP-1 shapes 3D enhancer landscapes. Nat. Struct. Mol. Biol. 30, 10–21 (2023).
pubmed: 36522426
doi: 10.1038/s41594-022-00880-x
Vierbuchen, T. et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell 68, 1067–1082 (2017).
pubmed: 29272704
pmcid: 5744881
doi: 10.1016/j.molcel.2017.11.026
Schapira, M., Tyers, M., Torrent, M. & Arrowsmith, C. H. WD40 repeat domain proteins: a novel target class? Nat. Rev. Drug Discov. 16, 773–786 (2017).
pubmed: 29026209
pmcid: 5975957
doi: 10.1038/nrd.2017.179
Grebien, F. et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat. Chem. Biol. 11, 571–578 (2015).
pubmed: 26167872
pmcid: 4511833
doi: 10.1038/nchembio.1859
He, Y. P. et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat. Chem. Biol. 13, 922–922 (2017).
pubmed: 28853738
doi: 10.1038/nchembio0817-922b
Qi, W. et al. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Cancer Res. https://doi.org/10.1158/1538-7445.Am2017-Lb-288 (2017).
Stewart, E. et al. Targeting the DNA repair pathway in Ewing sarcoma. Cell Rep. 9, 829–840 (2014).
pubmed: 25437539
pmcid: 4386669
doi: 10.1016/j.celrep.2014.09.028
Lord, C. J. & Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. Science 355, 1152–1158 (2017).
pubmed: 28302823
pmcid: 6175050
doi: 10.1126/science.aam7344
Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).
pubmed: 30431433
pmcid: 6277197
doi: 10.7554/eLife.41305
Padovani, C., Jevtic, P. & Rape, M. Quality control of protein complex composition. Mol. Cell 82, 1439–1450 (2022).
pubmed: 35316660
doi: 10.1016/j.molcel.2022.02.029
Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).
pubmed: 30190310
doi: 10.1126/science.aap8236
Hong, A. L. et al. Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. eLife 8, e44161 (2019).
pubmed: 30860482
pmcid: 6436895
doi: 10.7554/eLife.44161
Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).
pubmed: 24562383
pmcid: 3954704
doi: 10.1038/nm.3480
Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014).
pubmed: 24421395
pmcid: 3958034
doi: 10.1128/MCB.01372-13
Wang, L., Li, L. R. & Young, K. H. New agents and regimens for diffuse large B cell lymphoma. J. Hematol. Oncol. 13, 175 (2020).
pubmed: 33317571
pmcid: 7734862
doi: 10.1186/s13045-020-01011-z
Stewart, E. et al. Targeting the DNA repair pathway in Ewing sarcoma. Cell Rep. 9, 829–841 (2014).
pubmed: 25437539
pmcid: 4386669
doi: 10.1016/j.celrep.2014.09.028
Zheng, M. et al. Caspase-6 promotes activation of the caspase-11-NLRP3 inflammasome during Gram-negative bacterial infections. J. Biol. Chem. 297, 101379 (2021).
pubmed: 34740613
pmcid: 8633687
doi: 10.1016/j.jbc.2021.101379
Sidoli, S. et al. One minute analysis of 200 histone posttranslational modifications by direct injection mass spectrometry. Genome Res. 29, 978–987 (2019).
pubmed: 31123082
pmcid: 6581051
doi: 10.1101/gr.247353.118
Drosos, Y. et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol. Cell 82, 2472–2489 (2022).
pubmed: 35537449
pmcid: 9520607
doi: 10.1016/j.molcel.2022.04.015
Connelly, J. P. & Pruett-Miller, S. M. CRIS.py: a versatile and high-throughput analysis program for CRISPR-based genome editing. Sci. Rep. 9, 4194 (2019).
pubmed: 30862905
pmcid: 6414496
doi: 10.1038/s41598-019-40896-w
McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).
Rose, C. M. et al. Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3, 395–403 (2016).
pubmed: 27667366
pmcid: 5241079
doi: 10.1016/j.cels.2016.08.009
Yu, K. et al. High-throughput profiling of proteome and posttranslational modifications by 16-plex TMT labeling and mass spectrometry. Methods Mol. Biol. 2228, 205–224 (2021).
pubmed: 33950493
pmcid: 8458009
doi: 10.1007/978-1-0716-1024-4_15
Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).
pubmed: 31686031
doi: 10.1038/s41589-019-0378-3
Abdulrahman, W. et al. A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal. Biochem. 385, 383–385 (2009).
pubmed: 19061853
doi: 10.1016/j.ab.2008.10.044
He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).
pubmed: 32001526
doi: 10.1126/science.aaz9761
Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).
pubmed: 31086343
pmcid: 7000238
doi: 10.1038/s41592-019-0396-9
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).
pubmed: 22842542
pmcid: 4912033
doi: 10.1038/nmeth.2115
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
pubmed: 14568533
doi: 10.1016/j.jmb.2003.07.013
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).
pubmed: 31591578
pmcid: 6858545
doi: 10.1038/s41592-019-0575-8
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).
pubmed: 34267316
pmcid: 8282847
doi: 10.1038/s42003-021-02399-1
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
pubmed: 34282049
pmcid: 7612213
doi: 10.1126/science.abj8754
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774
doi: 10.1002/pro.3235
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).
doi: 10.1107/S2059798318002425
Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).
pubmed: 32483333
doi: 10.1038/s41592-020-0848-2
Wang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).
pubmed: 27669148
pmcid: 5115868
doi: 10.7554/eLife.17219
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537
doi: 10.1016/j.jmb.2007.05.022
Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D 60, 2256–2268 (2004).
pubmed: 15572779
doi: 10.1107/S0907444904026460
Armon, A., Graur, D. & Ben-Tal, N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol. 307, 447–463 (2001).
pubmed: 11243830
doi: 10.1006/jmbi.2000.4474
Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).
pubmed: 23954653
doi: 10.1016/j.jsb.2013.08.002
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).
pubmed: 28671674
pmcid: 5533649
doi: 10.1038/nmeth.4347
Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).
pubmed: 24040512
pmcid: 3771563
doi: 10.7554/eLife.01456
Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).
pubmed: 18805092
pmcid: 2628631
doi: 10.1016/j.cell.2008.07.022
Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).
pubmed: 25043012
pmcid: 4423819
doi: 10.1038/nature13527
Radko-Juettner, S. et al. Targeting DCAF5 suppresses SMARCB1-mutant cancer by stabilizing SWI/SNF. GitHub https://github.com/jamyers2358/SWISNF.DCAF5.Dependency (2024).