Biosignatures of defective sebaceous gland activity in sebum-rich and sebum-poor skin areas in adult atopic dermatitis.

aminoacids cholesterol epidermal lipids fatty acids fatty alcohols sapienate sebaceous gland squalene

Journal

Experimental dermatology
ISSN: 1600-0625
Titre abrégé: Exp Dermatol
Pays: Denmark
ID NLM: 9301549

Informations de publication

Date de publication:
Mar 2024
Historique:
revised: 07 03 2024
received: 28 08 2023
accepted: 14 03 2024
medline: 27 3 2024
pubmed: 27 3 2024
entrez: 27 3 2024
Statut: ppublish

Résumé

Atopic dermatitis (AD) is a composite disease presenting disruption of the skin permeability barrier (SPB) in the stratum corneum (SC). Recent evidence supports derangement of the sebaceous gland (SG) activity in the AD pathomechanisms. The objective of this study was to delineate profiles of both sebaceous and epidermal lipids and of aminoacids from SG-rich (SGR) and SG-poor (SGP) areas in AD. Both sebum and SC were sampled from SGR areas, while SC was sampled also from SGP areas in 54 adult patients with AD, consisting of 34 and 20 subjects, respectively with and without clinical involvement of face, and in 44 age and sex-matched controls. Skin biophysics were assessed in all sampling sites. Disruption of the SBP was found to be associated with dysregulated lipidome. Abundance of sapienate and lignocerate, representing, respectively, sebum and the SC type lipids, were decreased in sebum and SC from both SGR and SGP areas. Analogously, squalene was significantly diminished in AD, regardless the site. Extent of lipid derangement in SGR areas was correlated with the AD severity. The abundance of aminoacids in the SC from SGR areas was altered more than that determined in SGP areas. Several gender-related differences were found in both controls and AD subgroups. In conclusion, the SG activity was differently compromised in adult females and males with AD, in both SGR and SGP areas. In AD, alterations in the aminoacidome profiles were apparent in the SGR areas. Lipid signatures in association with aminoacidome and skin physical properties may serve the definition of phenotype clusters that associate with AD severity and gender.

Identifiants

pubmed: 38532571
doi: 10.1111/exd.15066
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e15066

Subventions

Organisme : National Ministry of Health
ID : RC-2024
Organisme : NAOS, Institute of Life Science

Informations de copyright

© 2024 The Authors. Experimental Dermatology published by John Wiley & Sons Ltd.

Références

Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109‐1122.
Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1.
Luger T, Amagai M, Dreno B, et al. Atopic dermatitis: role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci. 2021;102(3):142‐157.
Pavel P, Blunder S, Moosbrugger‐Martinz V, Elias PM, Dubrac S. Atopic dermatitis: the fate of the fat. Int J Mol Sci. 2022;23(4):2121. doi:10.3390/ijms23042121
Bandier J, Johansen JD, Petersen LJ, Carlsen BC. Skin pH, atopic dermatitis, and filaggrin mutations. Dermatitis. 2014;25(3):127‐129.
Tamari M, Hirota T. Genome‐wide association studies of atopic dermatitis. J Dermatol. 2014;41(3):213‐220.
Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134:792‐799.
Kezic S, O'Regan GM, Lutter R, et al. Filaggrin loss‐of‐function mutations are associated with enhanced expression of IL‐1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol. 2012;129(4):1031‐1039.
Elias PM, Williams ML, Choi EH, Feingold KR. Role of cholesterol sulfate in epidermal structure and function: lessons from X‐linked ichthyosis. Biochim Biophys Acta. 2014;1841(3):353‐361.
Elias PM. Stratum corneum acidification: how and why? Exp Dermatol. 2015;24(3):179‐180.
Zainal H, Jamil A, Md Nor N, Tang MM. Skin pH mapping and its relationship with transepidermal water loss, hydration and disease severity in adult patients with atopic dermatitis. Skin Res Technol. 2020;26(1):91‐98.
Fischer CL, Blanchette DR, Brogden KA, et al. The roles of cutaneous lipids in host defense. Biochim Biophys Acta. 2014;1841(3):319‐322.
Feingold KR, Elias PM. The important role of lipids in the epidermis and their role in the formation and maintenance of the cutaneous barrier. Biochim Biophys Acta. 2014;1841(3):279.
Sator PG, Schmidt JB, Honigsmann H. Comparison of epidermal hydration and skin surface lipids in healthy individuals and in patients with atopic dermatitis. J Am Acad Dermatol. 2003;48(3):352‐358.
Wirth H, Gloor M, Stoika D. Sebaceous glands in uninvolved skin of patients suffering from atopic dermatitis. Arch Dermatol Res. 1981;270(2):167‐169.
Picardo M, Mastrofrancesco A, Biro T. Sebaceous gland—a major player in skin homoeostasis. Exp Dermatol. 2015;24(7):485‐486.
Picardo M, Ottaviani M, Camera E, Mastrofrancesco A. Sebaceous gland lipids. Dermatoendocrinology. 2009;1(2):68‐71.
Lovaszi M, Szegedi A, Zouboulis CC, Törocsik D. Sebaceous‐immunobiology is orchestrated by sebum lipids. Dermatoendocrinology. 2017;9(1):e1375636.
Choi CW, Kim Y, Kim JE, et al. Enhancement of lipid content and inflammatory cytokine secretion in SZ95 sebocytes by palmitic acid suggests a potential link between free fatty acids and acne aggravation. Exp Dermatol. 2019;28(2):207‐210.
Sadowski T, Klose C, Gerl MJ, et al. Large‐scale human skin lipidomics by quantitative, high‐throughput shotgun mass spectrometry. Sci Rep. 2017;7:43761.
Ludovici M, Kozul N, Materazzi S, Risoluti R, Picardo M, Camera E. Influence of the sebaceous gland density on the stratum corneum lipidome. Sci Rep. 2018;8(1):11500‐11507.
Baurecht H, Rühlemann MC, Rodríguez E, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol. 2018;141(5):1668‐1676.
Emmert H, Baurecht H, Thielking F, et al. Stratum corneum lipidomics analysis reveals altered ceramide profile in atopic dermatitis patients across body sites with correlated changes in skin microbiome. Exp Dermatol. 2021;30(10):1398‐1408.
Luebberding S, Krueger N, Kerscher M. Age‐related changes in male skin: quantitative evaluation of one hundred and fifty male subjects. Skin Pharmacol Physiol. 2014;27(1):9‐17.
Seo YJ, Li ZJ, Choi DK, et al. Regional difference in sebum production by androgen susceptibility in human facial skin. Exp Dermatol. 2014;23(1):70‐72.
Furuichi M, Makino T, Matsunaga K, Hamade E, Yokoi H, Shimizu T. The usefulness of sebum check film for measuring the secretion of sebum. Arch Dermatol Res. 2010;302(9):657‐660.
Koppes SA, Brans R, Ljubojevic HS, Frings‐Dresen MHW, Rustemeyer T, Kezic S. Stratum corneum tape stripping: monitoring of inflammatory mediators in atopic dermatitis patients using topical therapy. Int Arch Allergy Immunol. 2016;170(3):187‐193.
Smirnov VV, Egorenkov EA, Myasnikova TN, et al. Lipidomic analysis as a tool for identifying susceptibility to various skin diseases. Fortschr Med. 2019;10(11):1871‐1874.
Hanifin JM, Thurston M, Omoto M, Cherill R, Tofte SJ, Graeber M. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. EASI Evaluator Group. Exp Dermatol. 2001;10(1):11‐18.
Okoro OE, Adenle A, Ludovici M, Truglio M, Marini F, Camera E. Lipidomics of facial sebum in the comparison between acne and non‐acne adolescents with dark skin. Sci Rep. 2021;11(1):16591. doi:10.1038/s41598-021-96043-x:16591
Briganti S, Truglio M, Angiolillo A, et al. Application of sebum lipidomics to biomarkers discovery in neurodegenerative diseases. Metabolites. 2021;11(12):819. doi:10.3390/metabo11120819
Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJ, van der Greef J, Timmerman ME. ANOVA‐simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics. 2005;21(13):3043‐3048.
Crown SB, Marze N, Antoniewicz MR. Catabolism of branched chain amino acids contributes significantly to synthesis of odd‐chain and even‐chain fatty acids in 3T3‐L1 adipocytes. PLoS One. 2015;10(12):e0145850.
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143‐155.
Green CR, Wallace M, Divakaruni AS, et al. Branched‐chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol. 2016;12(1):15‐21.
Wallace M, Green CR, Roberts LS, et al. Enzyme promiscuity drives branched‐chain fatty acid synthesis in adipose tissues. Nat Chem Biol. 2018;14(11):1021‐1031.
Park HG, Kothapalli KSD, Park WJ, et al. Palmitic acid (16:0) competes with omega‐6 linoleic and omega‐3 a‐linolenic acids for FADS2 mediated Delta6‐desaturation. Biochim Biophys Acta. 2016;1861(2):91‐97.
Flori E, Mastrofrancesco A, Ottaviani M, Maiellaro M, Zouboulis CC, Camera E. Desaturation of sebaceous‐type saturated fatty acids through the SCD1 and the FADS2 pathways impacts lipid neosynthesis and inflammatory response in sebocytes in culture. Exp Dermatol. 2023;32(6):808‐821.
Danso M, Boiten W, van Drongelen V, et al. Altered expression of epidermal lipid bio‐synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci. 2017;88(1):57‐66.
van Smeden J, Janssens M, Kaye ECJ, et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp Dermatol. 2014;23(1):45‐52.
Zwara A, Wertheim‐Tysarowska K, Mika A. Alterations of ultra long‐chain fatty acids in hereditary skin diseases‐review article. Front Med (Lausanne). 2021;8:730855.
Mihaly J, Marosvolgyi T, Szegedi A, et al. Increased FADS2‐derived n‐6 PUFAs and reduced n‐3 PUFAs in plasma of atopic dermatitis patients. Skin Pharmacol Physiol. 2014;27(5):242‐248.
Fluhr JW, Darlenski R, Surber C. Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol. 2008;159(1):23‐34.
Bakker DS, Nierkens S, Knol EF, et al. Confirmation of multiple endotypes in atopic dermatitis based on serum biomarkers. J Allergy Clin Immunol. 2021;147(1):189‐198.
Tokura Y, Hayano S. Subtypes of atopic dermatitis: from phenotype to endotype. Allergol Int. 2022;71(1):14‐24.
Elias PM. Lipid abnormalities and lipid‐based repair strategies in atopic dermatitis. Biochim Biophys Acta. 2003;1841(3):323‐330.
Passeron T, Zouboulis CC, Tan J, et al. Adult skin acute stress responses to short‐term environmental and internal aggression from exposome factors. J Eur Acad Dermatol Venereol. 2021;35(10):1963‐1975. doi:10.1111/jdv.17432
Maintz L, Welchowski T, Herrmann N, et al. Machine learning‐based deep phenotyping of atopic dermatitis: severity‐associated factors in adolescent and adult patients. JAMA Dermatol. 2021;157(12):1414‐1424. doi:10.1001/jamadermatol.2021.3668
Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging multilayered "omics" data for atopic dermatitis: a road map to precision medicine. Front Immunol. 2018;9:2727.
Agrawal K, Hassoun LA, Foolad N, et al. Effects of atopic dermatitis and gender on sebum lipid mediator and fatty acid profiles. Prostaglandins Leukot Essent Fatty Acids. 2018;134:7‐16.
Ilves L, Ottas A, Kaldvee B, et al. Metabolomic analysis of skin biopsies from patients with atopic dermatitis reveals hallmarks of inflammation, disrupted barrier function and oxidative stress. Acta Derm Venereol. 2021;101(2):adv00407.
Yin H, Qiu Z, Zhu R, et al. Dysregulated lipidome of sebum in patients with atopic dermatitis. Allergy. 2022;78:1524‐1537.
Cork MJ, Danby SG, Vasilopoulos Y, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol. 2009;129(8):1892‐1908.
Irvine AD, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315‐1327.
Čepelak I, Dodig S, Pavić I. Filaggrin and atopic march. Biochem Med (Zagreb). 2019;29(2):20501. doi:10.11613/BM.2019.020501
Suarez‐Farinas M, Tintle SJ, Shemer A, et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol. 2011;127(4):954.
Gupta J, Margolis DJ. Filaggrin gene mutations with special reference to atopic dermatitis. Curr Treat Options Allergy. 2020;7(3):403‐413.
Kezic S, O'Regan GM, Yau N, et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy. 2011;66(7):934‐940.
Wong LS, Otsuka A, Tanizaki H, et al. Decrease of superficial serine and lactate in the stratum corneum due to repetitive frictional trauma. Int J Dermatol. 2018;57(3):299‐305.
Amin R, Lechner A, Vogt A, Blume‐Peytavi U, Kottner J. Molecular characterization of xerosis cutis: a systematic review. PLoS One. 2021;16(12):e0261253.
Yoshihisa Y, Rehman MU, Nakagawa M, et al. Inflammatory cytokine‐mediated induction of serine racemase in atopic dermatitis. J Cell Mol Med. 2018;22(6):3133‐3138.
Wang Y, Niu Y, Zhang Z, et al. Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat Struct Mol Biol. 2021;28(3):240‐248.
Inoue K, Takei K, Denda M. Functional glycine receptor in cultured human keratinocytes. Exp Dermatol. 2015;24(4):307‐309.
Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol. 2003;121(2):362‐367.
Leman G, Pavel P, Hermann M, et al. Mitochondrial activity is upregulated in nonlesional atopic dermatitis and amenable to therapeutic intervention. J Invest Dermatol. 2022;142(10):2623‐2634.
Mukherjee S, Mitra R, Maitra A, et al. Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome. Sci Rep. 2016;6:36062.
Esler WP, Tesz GJ, Hellerstein MK, et al. Human sebum requires de novo lipogenesis, which is increased in acne vulgaris and suppressed by acetyl‐CoA carboxylase inhibition. Sci Transl Med. 2019;11(492). doi:10.1126/scitranslmed.aau8465
Rizzo WB. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim Biophys Acta. 2014;1841(3):377‐389.
Danby SG, Cork MJ. pH in atopic dermatitis. Curr Probl Dermatol. 2018;54:95‐107.
Sassa T, Kihara A. Metabolism of very long‐chain fatty acids: genes and pathophysiology. Biomol Ther (Seoul). 2014;22(2):83‐92.
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res. 2016;63:50‐69.
Brunner PM, Israel A, Zhang N, et al. Early‐onset pediatric atopic dermatitis is characterized by T(H)2/T(H)17/T(H)22‐centered inflammation and lipid alterations. J Allergy Clin Immunol. 2018;141(6):2094‐2106.
Leshem YA, Hajar T, Hanifin JM, Simpson EL. What the eczema area and severity index score tells us about the severity of atopic dermatitis: an interpretability study. Br J Dermatol. 2015;172(5):1353‐1357.
Chopra R, Vakharia PP, Sacotte R, et al. Severity strata for eczema area and severity index (EASI), modified EASI, scoring atopic dermatitis (SCORAD), objective SCORAD, atopic dermatitis severity index and body surface area in adolescents and adults with atopic dermatitis. Br J Dermatol. 2017;177(5):1316‐1321.
Ishikawa J, Shimotoyodome Y, Ito S, et al. Variations in the ceramide profile in different seasons and regions of the body contribute to stratum corneum functions. Arch Dermatol Res. 2013;305(2):151‐162.
Chu H, Kim SM, Zhang K, et al. Head and neck dermatitis is exacerbated by malassezia furfur colonization, skin barrier disruption, and immune dysregulation. Front Immunol. 2023;14:1114321. doi:10.3389/fimmu.2023.1114321
Szabo K, Erdei L, Bolla BS, Tax G, Biro T, Kemeny L. Factors shaping the composition of the cutaneous microbiota. Br J Dermatol. 2017;176(2):344‐351.
Li S, Villarreal M, Stewart S, et al. Altered composition of epidermal lipids correlates with staphylococcus aureus colonization status in atopic dermatitis. Br J Dermatol. 2017;177(4):e125‐e127.
Zheng Y, Hunt RL, Villaruz AE, et al. Commensal staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe. 2022;30(3):301‐313.
Tay ASL, Li C, Nandi T, et al. Atopic dermatitis microbiomes stratify into ecologic dermotypes enabling microbial virulence and disease severity. J Allergy Clin Immunol. 2021;147(4):1329‐1340.
Wille JJ, Kydonieus A. Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against gram‐positive bacteria. Skin Pharmacol Appl Ski Physiol. 2003;16(3):176‐187.
Moran JC, Alorabi JA, Horsburgh MJ. Comparative transcriptomics reveals discrete survival responses of S. aureus and S. epidermidis to sapienic acid. Front Microbiol. 2017;8:33.
Wheatley VR. Cutaneous lipogenesis. Major pathways of carbon flow and possible interrelationships between the epidermis and sebaceous glands. J Invest Dermatol. 1974;62(3):245‐256.
Jia Y, Gan Y, He C, Chen Z, Zhou C. The mechanism of skin lipids influencing skin status. J Dermatol Sci. 2018;89(2):112‐119.
Broderick C, Ziehfreund S, van Bart K, et al. Biomarkers associated with the development of comorbidities in patients with atopic dermatitis: a systematic review. Allergy. 2022;78:84‐120.
Nomura T, Wu J, Kabashima K, Guttman‐Yassky E. Endophenotypic variations of atopic dermatitis by age, race, and ethnicity. J Allergy Clin Immunol Pract. 2020;8(6):1840‐1852.
Araviiskaia E, Pincelli C, Sparavigna A, Luger T. The role of a novel generation of emollients, ‘emollients plus’, in atopic dermatitis. Clin Cosmet Investig Dermatol. 2022;15:2705‐2719.
Simpson EL, Chalmers JR, Hanifin JM, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818‐823.

Auteurs

Alessia Cavallo (A)

Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Emanuela Camera (E)

Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Grazia Bottillo (G)

Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Miriam Maiellaro (M)

Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Mauro Truglio (M)

Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Federico Marini (F)

Department of Chemistry, 'La Sapienza' University, Rome, Italy.

Marlène Chavagnac-Bonneville (M)

Research and Development Department, NAOS Ecobiology Company (Bioderma- Institute Esthederm - Etat Pur), Aix-en-Provence, France.

Aurélie Fauger (A)

Research and Development Department, NAOS Ecobiology Company (Bioderma- Institute Esthederm - Etat Pur), Aix-en-Provence, France.

Eric Perrier (E)

NAOS, Institute of Life Science, Aix-en-Provence, France.
Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Flavia Pigliacelli (F)

Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Mauro Picardo (M)

Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Antonio Cristaudo (A)

Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Maria Mariano (M)

Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy.

Classifications MeSH