Genetic similarity between relatives provides evidence on the presence and history of assortative mating.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 Mar 2024
26 Mar 2024
Historique:
received:
10
08
2023
accepted:
13
03
2024
medline:
27
3
2024
pubmed:
27
3
2024
entrez:
27
3
2024
Statut:
epublish
Résumé
Assortative mating - the non-random mating of individuals with similar traits - is known to increase trait-specific genetic variance and genetic similarity between relatives. However, empirical evidence is limited for many traits, and the implications hinge on whether assortative mating has started recently or many generations ago. Here we show theoretically and empirically that genetic similarity between relatives can provide evidence on the presence and history of assortative mating. First, we employed path analysis to understand how assortative mating affects genetic similarity between family members across generations, finding that similarity between distant relatives is more affected than close relatives. Next, we correlated polygenic indices of 47,135 co-parents from the Norwegian Mother, Father, and Child Cohort Study (MoBa) and found genetic evidence of assortative mating in nine out of sixteen examined traits. The same traits showed elevated similarity between relatives, especially distant relatives. Six of the nine traits, including educational attainment, showed greater genetic variance among offspring, which is inconsistent with stable assortative mating over many generations. These results suggest an ongoing increase in familial similarity for these traits. The implications of this research extend to genetic methodology and the understanding of social and economic disparities.
Identifiants
pubmed: 38531929
doi: 10.1038/s41467-024-46939-9
pii: 10.1038/s41467-024-46939-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2641Informations de copyright
© 2024. The Author(s).
Références
Fisher, R. A. The Correlation between Relatives on the Supposition of Mendelian Inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).
doi: 10.1017/S0080456800012163
Wright, S. Systems of mating. III. Assortative Mating based on Somatic resemblance. Genetics 6, 144–161 (1921).
pubmed: 17245960
pmcid: 1200503
doi: 10.1093/genetics/6.2.144
Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits. (Sinauer Associates, Inc., 1998).
Nagylaki, T. The correlation between relatives with assortative mating. Ann. Hum. Genet. 42, 131–137 (1978).
pubmed: 686681
doi: 10.1111/j.1469-1809.1978.tb00938.x
Gimelfarb, A. A general linear model for the genotypic covariance between relatives under assortative mating. J. Math. Biol. 13, 209–226 (1981).
doi: 10.1007/BF00275215
Robinson, M. R. et al. Genetic evidence of assortative mating in humans. Nat. Hum. Behav. 1, 0016 (2017).
doi: 10.1038/s41562-016-0016
Plomin, R., Krapohl, E. & O’Reilly, P. F. Assortative Mating—A Missing Piece in the Jigsaw of Psychiatric Genetics. JAMA Psychiatry 73, 323 (2016).
pubmed: 26914795
pmcid: 4880037
doi: 10.1001/jamapsychiatry.2015.3204
Bulmer, M. G. The Mathematical Theory of Quantitative Genetics. (Oxford University Press, 1980).
Yengo, L. Mate choice through a genomic lens. Nat. Rev. Genet. 664 (2023). https://doi.org/10.1038/s41576-023-00605-w .
Schwartz, C. R. Trends and Variation in Assortative Mating: Causes and Consequences. Annu. Rev. Sociol. 39, 451–470 (2013).
doi: 10.1146/annurev-soc-071312-145544
Mare, R. D. Five Decades of Educational Assortative Mating. Am. Sociol. Rev. 56, 15–32 (1991).
doi: 10.2307/2095670
Birkelund, G. E. & Heldal, J. Who marries whom? Educational homogamy in Norway. Demogr. Res. 8, 1–30 (2003).
doi: 10.4054/DemRes.2003.8.1
Greenwood, J., Guner, N., Kocharkov, G. & Santos, C. Marry Your Like: Assortative Mating and Income Inequality. Am. Econ. Rev. 104, 348–353 (2014).
doi: 10.1257/aer.104.5.348
Eika, L., Mogstad, M. & Zafar, B. Educational Assortative Mating and Household Income Inequality. J. Political Econ. 127, 2795–2835 (2019).
doi: 10.1086/702018
Nordsletten, A. E. et al. Patterns of Nonrandom Mating Within and Across 11 Major Psychiatric Disorders. JAMA Psychiatry 73, 354 (2016).
pubmed: 26913486
pmcid: 5082975
doi: 10.1001/jamapsychiatry.2015.3192
Horwitz, T. B., Balbona, J. V., Paulich, K. N. & Keller, M. C. Evidence of correlations between human partners based on systematic reviews and meta-analyses of 22 traits and UK Biobank analysis of 133 traits. Nat. Hum. Behav. 1568–1583 (2023). https://doi.org/10.1038/s41562-023-01672-z .
Luo, S. & Klohnen, E. C. Assortative Mating and Marital Quality in Newlyweds: A Couple-Centered Approach. J. Personal. Soc. Psychol. 88, 304–326 (2005).
doi: 10.1037/0022-3514.88.2.304
Luo, S. Assortative mating and couple similarity: Patterns, mechanisms, and consequences. Soc. Personal. Psychol. Compass 11, e12337 (2017).
doi: 10.1111/spc3.12337
Torvik, F. A. et al. Modeling assortative mating and genetic similarities between partners, siblings, and in-laws. Nat. Commun. 13, 1108 (2022).
pubmed: 35233010
pmcid: 8888605
doi: 10.1038/s41467-022-28774-y
Sjaarda, J. & Kutalik, Z. Partner choice, confounding and trait convergence all contribute to phenotypic partner similarity. Nat. Hum. Behav. 776–789 (2023). https://doi.org/10.1038/s41562-022-01500-w .
Turkheimer, E. Three Laws of Behavior Genetics and What They Mean. Curr. Direc. Psychol. Sci. 9, 160–164 (2000).
doi: 10.1111/1467-8721.00084
Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).
pubmed: 25985137
doi: 10.1038/ng.3285
Domingue, B. W., Fletcher, J., Conley, D. & Boardman, J. D. Genetic and educational assortative mating among US adults. Proc. Natl. Acad. Sci. 111, 7996–8000 (2014).
pubmed: 24843128
pmcid: 4050565
doi: 10.1073/pnas.1321426111
Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022).
pubmed: 35361970
pmcid: 9005349
doi: 10.1038/s41588-022-01016-z
Yengo, L. et al. Imprint of assortative mating on the human genome. Nat. Hum. Behav. 2, 948–954 (2018).
pubmed: 30988446
pmcid: 6705135
doi: 10.1038/s41562-018-0476-3
Magnus, P. et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).
pubmed: 27063603
doi: 10.1093/ije/dyw029
Corfield, E. C. et al. The Norwegian Mother, Father, and Child cohort study (MoBa) genotyping data resource: MoBaPsychGen pipeline v.1 Preprint at https://doi.org/10.1101/2022.06.23.496289 (BioRxiv, 2022).
Gimelfarb, A. Quantitative characters under assortative mating: Gametic model. Theor. Popul. Biol. 25, 312–330 (1984).
pubmed: 6474382
doi: 10.1016/0040-5809(84)90012-1
Hayashi, T. Genetic variance under assortative mating in the infinitesimal model. Genes Genet. Syst. 73, 397–405 (1998).
doi: 10.1266/ggs.73.397
Wright, S. Systems of mating. II. The effects of inbreeding on the genetic composition of a population. Genetics 6, 124–143 (1921).
pubmed: 17245959
pmcid: 1200502
doi: 10.1093/genetics/6.2.124
Wilson, S. R. The correlation between relatives under the multifactorial model with assortative mating. Ann. Hum. Genet. 37, 189–204 (1973).
pubmed: 4768556
doi: 10.1111/j.1469-1809.1973.tb01826.x
Yengo, L. & Visscher, P. M. Assortative mating on complex traits revisited: Double first cousins and the X-chromosome. Theor. Popul. Biol. 124, 51–60 (2018).
pubmed: 30316741
pmcid: 6296780
doi: 10.1016/j.tpb.2018.09.002
Wright, S. Correlation and Causation. J. Agric. Res. 20, 557–585 (1921).
Wright, S. The Method of Path Coefficients. Ann. Math. Stat. 5, 161–215 (1934).
doi: 10.1214/aoms/1177732676
Cloninger, C. R. Interpretation of intrinsic and extrinsic structural relations by path analysis: theory and applications to assortative mating. Genet. Res. 36, 133–145 (1980).
doi: 10.1017/S0016672300019765
Balbona, J. V., Kim, Y. & Keller, M. C. Estimation of Parental Effects Using Polygenic Scores. Behav. Genet. 51, 264–278 (2021).
pubmed: 33387133
pmcid: 8093180
doi: 10.1007/s10519-020-10032-w
Keller, M. C. et al. Modeling Extended Twin Family Data I: Description of the Cascade Model. Twin Res. Hum. Genet. 12, 8–18 (2009).
pubmed: 19210175
pmcid: 4070287
doi: 10.1375/twin.12.1.8
Demange, P. A. et al. Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction. Nat. Genet. 53, 35–44 (2021).
pubmed: 33414549
pmcid: 7116735
doi: 10.1038/s41588-020-00754-2
Adermon, A., Lindahl, M. & Palme, M. Dynastic Human Capital, Inequality, and Intergenerational Mobility. Am. Econ. Rev. 111, 1523–1548 (2021).
doi: 10.1257/aer.20190553
Rice, J., Cloninger, C. R. & Reich, T. Multifactorial inheritance with cultural transmission and assortative mating. I. Description and basic properties of the unitary models. Am. J. Hum. Genet. 30, 618–643 (1978).
pubmed: 747189
pmcid: 1685878
Abdellaoui, A., Borcan, O., Chiappori, P.-A. & Hugh-Jones, D. Trading Social Status for Genetics in Marriage Markets: Evidence from UK Biobank. HCEO Working Paper Series < https://hceconomics.uchicago.edu/research/working-paper/trading-social-status-genetics-marriage-markets-evidence-uk-biobank >.(2022).
Ayorech, Z. et al. The structure of psychiatric comorbidity without selection and assortative mating. Transl. Psychiatry 14, 121 (2024).
pubmed: 38409260
pmcid: 10897477
doi: 10.1038/s41398-024-02768-4
Ask, H., Idstad, M., Engdahl, B. & Tambs, K. Non-random Mating and Convergence Over Time for Mental Health, Life Satisfaction, and Personality: The Nord-Trøndelag Health Study. Behav. Genet. 43, 108–119 (2013).
pubmed: 23264209
doi: 10.1007/s10519-012-9578-2
Torvik, F. A. et al. Non-random Mating Patterns in Education, Mental, and Somatic Health: A Population Study on Within- and Cross-Trait Associations Preprint at https://doi.org/10.1101/2023.11.27.23299055 (MedrXiv, 2023).
Fried, E. I., Flake, J. K. & Robinaugh, D. J. Revisiting the theoretical and methodological foundations of depression measurement. Nat. Rev. Psychol. 358–368 (2022). https://doi.org/10.1038/s44159-022-00050-2 .
Augustine Kong et al. The nature of nurture: Effects of parental genotypes. Science 359, 424–428 (2018).
pubmed: 29371463
doi: 10.1126/science.aan6877
Young, A. I., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of genotype-phenotype associations in humans. Science 365, 1396–1400 (2019).
pubmed: 31604265
pmcid: 6894903
doi: 10.1126/science.aax3710
Young, A. I. et al. Relatedness disequilibrium regression estimates heritability without environmental bias. Nat. Genet. 50, 1304–1310 (2018).
pubmed: 30104764
pmcid: 6130754
doi: 10.1038/s41588-018-0178-9
Heath, A. C. et al. Education policy and the heritability of educational attainment. Nature 314, 734–736 (1985).
pubmed: 4039415
doi: 10.1038/314734a0
Brendan Bulik-Sullivan et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676
pmcid: 4797329
doi: 10.1038/ng.3406
Clark, G. The inheritance of social status: England, 1600 to 2022. Proc. Natl Acad. Sci. 120, e2300926120 (2023).
pubmed: 37364122
pmcid: 10319028
doi: 10.1073/pnas.2300926120
Nivard, M. G. et al. More than nature and nurture, indirect genetic effects on children’s academic achievement are consequences of dynastic social processes. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01796-2 (2024).
doi: 10.1038/s41562-023-01796-2
pubmed: 38225408
pmcid: 10922726
Demange, P. A. et al. Estimating effects of parents’ cognitive and non-cognitive skills on offspring education using polygenic scores. Nat. Commun. 13, 4801 (2022).
pubmed: 35999215
pmcid: 9399113
doi: 10.1038/s41467-022-32003-x
Bilghese, M. et al. A General Approach to Adjusting Genetic Studies for Assortative Mating Preprint at https://doi.org/10.1101/2023.09.01.555983 (BioRxiv, 2023).
Knopik, V. S., Neiderhiser, J. M., DeFries, J. C. & Plomin, R. Behavioral Genetics. 7th edn, (Worth Publishers, 2017).
Border, R. et al. Assortative mating biases marker-based heritability estimators. Nat. Commun. 13, 660 (2022).
pubmed: 35115518
pmcid: 8814020
doi: 10.1038/s41467-022-28294-9
Young, A. I. Solving the missing heritability problem. PLOS Genet. 15, e1008222 (2019).
pubmed: 31233496
pmcid: 6611648
doi: 10.1371/journal.pgen.1008222
Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
pubmed: 19812666
pmcid: 2831613
doi: 10.1038/nature08494
Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).
pubmed: 36395242
pmcid: 9901291
doi: 10.1126/science.abo2059
Abdellaoui, A., Verweij, K. J. H. & Zietsch, B. P. No evidence for genetic assortative mating beyond that due to population stratification. Proc. Natl Acad. Sci. 111, E4137–E4137 (2014).
pubmed: 25232036
pmcid: 4210009
doi: 10.1073/pnas.1410781111
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
pubmed: 16862161
doi: 10.1038/ng1847
Blanc, J. & Berg, J. J. Testing for differences in polygenic scores in the presence of confounding Preprint at https://doi.org/10.1101/2023.03.12.532301 (BioRxiv, 2023).
Yamamoto, K. et al. Genetic footprints of assortative mating in the Japanese population. Nat. Hum. Behav. 65–73 (2022). https://doi.org/10.1038/s41562-022-01438-z .
Verweij, K. J. H. & Abdellaoui, A. Partner-choice genetics in Japan. Nat. Hum. Behav. 13–14 (2022). https://doi.org/10.1038/s41562-022-01439-y .
Paltiel, L. et al. The biobank of the Norwegian Mother and Child Cohort Study – present status. Norsk Epidemiologi 24 (2014). https://doi.org/10.5324/nje.v24i1-2.1755 .
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Vilhjálmsson, J. & Bjarni et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am. J. Hum. Genet. 97, 576–592 (2015).
pubmed: 26430803
pmcid: 4596916
doi: 10.1016/j.ajhg.2015.09.001
Chou, W.-C. et al. A combined reference panel from the 1000 Genomes and UK10K projects improved rare variant imputation in European and Chinese samples. Sci. Rep. 6, 39313 (2016).
pubmed: 28004816
pmcid: 5177868
doi: 10.1038/srep39313
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Giga Sci. 4, s13742-13015–10047-13748 (2015).
doi: 10.1186/s13742-015-0047-8
R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2022).
Neale, M. C. et al. OpenMx 2.0: Extended Structural Equation and Statistical Modeling. Psychometrika 81, 535–549 (2016).
pubmed: 25622929
doi: 10.1007/s11336-014-9435-8