The O-GlcNAc Modification of Recombinant Tau Protein and Characterization of the O-GlcNAc Pattern for Functional Study.

Chemoenzymatic labeling Mass spectrometry Mass tag NMR spectroscopy O-GlcNAc transferase O-GlcNAcylation Recombinant proteins

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 21 3 2024
pubmed: 21 3 2024
entrez: 21 3 2024
Statut: ppublish

Résumé

The neuronal microtubule-associated tau protein is characterized in vivo by a large number of post-translational modifications along the entire primary sequence that modulates its function. The primary modification of tau is phosphorylation of serine/threonine or tyrosine residues that is involved in the regulation of microtubule binding and polymerization. In neurodegenerative disorders referred to as tauopathies including Alzheimer's disease, tau is abnormally hyperphosphorylated and forms fibrillar inclusions in neurons progressing throughout different brain area during the course of the disease. The O-β-linked N-acetylglucosamine (O-GlcNAc) is another reversible post-translational modification of serine/threonine residues that is installed and removed by the unique O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA), respectively. This modification was described as a potential modulator of tau phosphorylation and functions in the physiopathology. Moreover, reducing protein O-GlcNAc levels in the brain upon treatment of tauopathy mouse models with an OGA inhibitor reveals a beneficial effect on tau pathology and neurodegeneration. However, whether the role of tau O-GlcNAcylation is responsible of the protective effect against tau toxicity remains to be determined. The production of O-GlcNAc modified recombinant tau protein is a valuable tool for the investigations of the impact of O-GlcNAcylation on tau functions, modulation of interactions with partners and crosstalk with other post-translational modifications, including but not restricted to phosphorylation. We describe here the in vitro O-GlcNAcylation of tau with recombinant OGT for which we provide an expression and purification protocol. The use of the O-GlcNAc tau protein in functional studies requires the analytical characterization of the O-GlcNAc pattern. Here, we describe a method for the O-GlcNAc modification of tau protein with recombinant OGT and the analytical characterization of the resulting O-GlcNAc pattern by a combination of methods for the overall characterization of tau O-GlcNAcylation by chemoenzymatic labeling and mass spectrometry, as well as the quantitative, site-specific pattern by NMR spectroscopy.

Identifiants

pubmed: 38512671
doi: 10.1007/978-1-0716-3629-9_14
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

237-269

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190. https://doi.org/10.1038/nature23002
doi: 10.1038/nature23002 pubmed: 28678775 pmcid: 5552202
Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR, Wang K, Williams D, DeTure M, Dickson DW, Cook CN, Seyfried NT, Petrucelli L, Fitzpatrick AWP (2020) Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180:633–644.e12. https://doi.org/10.1016/j.cell.2020.01.027
doi: 10.1016/j.cell.2020.01.027 pubmed: 32032505 pmcid: 7491959
Zhang W, Tarutani A, Newell KL, Murzin AG, Matsubara T, Falcon B, Vidal R, Garringer HJ, Shi Y, Ikeuchi T, Murayama S, Ghetti B, Hasegawa M, Goedert M, Scheres SHW (2020) Novel tau filament fold in corticobasal degeneration. Nature 580:283–287. https://doi.org/10.1038/s41586-020-2043-0
doi: 10.1038/s41586-020-2043-0 pubmed: 32050258 pmcid: 7148158
Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert M, Scheres SH (2019) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. elife 8:e43584. https://doi.org/10.7554/eLife.43584
doi: 10.7554/eLife.43584 pubmed: 30720432 pmcid: 6375701
Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561:137–140. https://doi.org/10.1038/s41586-018-0454-y
doi: 10.1038/s41586-018-0454-y pubmed: 30158706 pmcid: 6204212
Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, Ghetti B, Scheres SHW, Goedert M (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol 136:699–708. https://doi.org/10.1007/s00401-018-1914-z
doi: 10.1007/s00401-018-1914-z pubmed: 30276465 pmcid: 6208733
Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, van Beers M, Tarutani A, Kametani F, Garringer HJ, Vidal R, Hallinan GI, Lashley T, Saito Y, Murayama S, Yoshida M, Tanaka H, Kakita A, Ikeuchi T, Robinson AC, Mann DMA, Kovacs GG, Revesz T, Ghetti B, Hasegawa M, Goedert M, Scheres SHW (2021) Structure-based classification of tauopathies. Nature 598:359–363. https://doi.org/10.1038/s41586-021-03911-7
doi: 10.1038/s41586-021-03911-7 pubmed: 34588692 pmcid: 7611841
Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271:28741–28744. https://doi.org/10.1074/jbc.271.46.28741
doi: 10.1074/jbc.271.46.28741 pubmed: 8910513
Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL, Mucke L (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18:1183–1189. https://doi.org/10.1038/nn.4067
doi: 10.1038/nn.4067 pubmed: 26192747 pmcid: 8049446
Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9:153–160
doi: 10.1074/mcp.M900268-MCP200 pubmed: 19692427
Smet-Nocca C, Broncel M, Wieruszeski J-M, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CPR (2011) Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol BioSyst 7:1420–1429. https://doi.org/10.1039/c0mb00337a
doi: 10.1039/c0mb00337a pubmed: 21327254
Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ (2011) Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 40:857–868. https://doi.org/10.1007/s00726-010-0705-1
doi: 10.1007/s00726-010-0705-1 pubmed: 20706749
Bourré G, Cantrelle F-X, Kamah A, Chambraud B, Landrieu I, Smet-Nocca C (2018) Direct crosstalk between O-GlcNAcylation and phosphorylation of tau protein investigated by NMR spectroscopy. Front Endocrinol 9:595. https://doi.org/10.3389/fendo.2018.00595
doi: 10.3389/fendo.2018.00595
Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:10804–10809
doi: 10.1073/pnas.0400348101 pubmed: 15249677 pmcid: 490015
Yuzwa SA, Shan X, Jones BA, Zhao G, Woodward ML, Li X, Zhu Y, McEachern EJ, Silverman MA, Watson NV, Gong C-X, Vocadlo DJ (2014) Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol Neurodegener 9:42. https://doi.org/10.1186/1750-1326-9-42
doi: 10.1186/1750-1326-9-42 pubmed: 25344697 pmcid: 4232697
Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ, Davies GJ, Vocadlo DJ (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4:483–490. https://doi.org/10.1038/nchembio.96
doi: 10.1038/nchembio.96 pubmed: 18587388
Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8:393–399. https://doi.org/10.1038/nchembio.797
doi: 10.1038/nchembio.797 pubmed: 22366723
Cantrelle F-X, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS, Hackenberger CPR, Landrieu I, Smet-Nocca C (2021) Phosphorylation and O-GlcNAcylation of the PHF-1 epitope of tau protein induce local conformational changes of the C-terminus and modulate tau self-assembly into fibrillar aggregates. Front Mol Neurosci 14:661368. https://doi.org/10.3389/fnmol.2021.661368
doi: 10.3389/fnmol.2021.661368 pubmed: 34220449 pmcid: 8249575
Lefebvre T, Ferreira S, Dupont-Wallois L, Bussière T, Dupire M-J, Delacourte A, Michalski J-C, Caillet-Boudin M-L (2003) Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of tau proteins – a role in nuclear localization. Biochim Biophys Acta 1619:167–176
doi: 10.1016/S0304-4165(02)00477-4 pubmed: 12527113
Li X, Lu F, Wang J-Z, Gong C-X (2006) Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci 23:2078–2086. https://doi.org/10.1111/j.1460-9568.2006.04735.x
doi: 10.1111/j.1460-9568.2006.04735.x pubmed: 16630055
Graham DL, Gray AJ, Joyce JA, Yu D, O’Moore J, Carlson GA, Shearman MS, Dellovade TL, Hering H (2014) Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology 79:307–313. https://doi.org/10.1016/j.neuropharm.2013.11.025
doi: 10.1016/j.neuropharm.2013.11.025 pubmed: 24326295
Hastings NB, Wang X, Song L, Butts BD, Grotz D, Hargreaves R, Fred Hess J, Hong K-LK, Huang CR-R, Hyde L, Laverty M, Lee J, Levitan D, Lu SX, Maguire M, Mahadomrongkul V, McEachern EJ, Ouyang X, Rosahl TW, Selnick H, Stanton M, Terracina G, Vocadlo DJ, Wang G, Duffy JL, Parker EM, Zhang L (2017) Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol Neurodegener 12:39. https://doi.org/10.1186/s13024-017-0181-0
doi: 10.1186/s13024-017-0181-0 pubmed: 28521765 pmcid: 5437664
Iyer SP, Hart GW (2003) Dynamic nuclear and cytoplasmic glycosylation: enzymes of O-GlcNAc cycling. Biochemistry 42:2493–2499. https://doi.org/10.1021/bi020685a
doi: 10.1021/bi020685a pubmed: 12614143
Zachara NE, Hart GW (2006) Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta 1761:599–617. https://doi.org/10.1016/j.bbalip.2006.04.007
doi: 10.1016/j.bbalip.2006.04.007 pubmed: 16781888
Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022
doi: 10.1038/nature05815 pubmed: 17460662
Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66:315–335. https://doi.org/10.1146/annurev.biochem.66.1.315
doi: 10.1146/annurev.biochem.66.1.315 pubmed: 9242909
Dias WB, Hart GW (2007) O-GlcNAc modification in diabetes and Alzheimer’s disease. Mol BioSyst 3:766–772. https://doi.org/10.1039/b704905f
doi: 10.1039/b704905f pubmed: 17940659
Wulff-Fuentes E, Berendt RR, Massman L, Danner L, Malard F, Vora J, Kahsay R, Olivier-Van Stichelen S (2021) The human O-GlcNAcome database and meta-analysis. Sci Data 8:25. https://doi.org/10.1038/s41597-021-00810-4
doi: 10.1038/s41597-021-00810-4 pubmed: 33479245 pmcid: 7820439
Leney AC, El Atmioui D, Wu W, Ovaa H, Heck AJR (2017) Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc Natl Acad Sci 114:E7255–E7261. https://doi.org/10.1073/pnas.1620529114
doi: 10.1073/pnas.1620529114 pubmed: 28808029 pmcid: 5584407
Hart GW, Greis KD, Dong LY, Blomberg MA, Chou TY, Jiang MS, Roquemore EP, Snow DM, Kreppel LK, Cole RN et al (1995) O-linked N-acetylglucosamine: the “yin-yang” of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol 376:115–123
doi: 10.1007/978-1-4615-1885-3_10 pubmed: 8597237
Butkinaree C, Park K, Hart GW (2009) O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800(2):96–106
doi: 10.1016/j.bbagen.2009.07.018 pubmed: 19647786 pmcid: 2815129
Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem 275:29179–29182
doi: 10.1074/jbc.R000010200 pubmed: 10924527
Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804
doi: 10.1074/mcp.M200048-MCP200 pubmed: 12438562
Saha A, Bello D, Fernández-Tejada A (2021) Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 50:10451–10485. https://doi.org/10.1039/D0CS01275K
doi: 10.1039/D0CS01275K pubmed: 34338261 pmcid: 8451060
Gorelik A, van Aalten DMF (2020) Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 1:98–109. https://doi.org/10.1039/D0CB00052C
doi: 10.1039/D0CB00052C pubmed: 34458751 pmcid: 8386111
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C (2022) Deciphering the structure and formation of amyloids in neurodegenerative diseases with chemical biology tools. Front Chem 10:886382. https://doi.org/10.3389/fchem.2022.886382
doi: 10.3389/fchem.2022.886382 pubmed: 35646824 pmcid: 9133342
Rexach JE, Rogers CJ, Yu S-H, Tao J, Sun YE, Hsieh-Wilson LC (2010) Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat Chem Biol 6:645–651. https://doi.org/10.1038/nchembio.412
doi: 10.1038/nchembio.412 pubmed: 20657584 pmcid: 2924450
Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3:339–348. https://doi.org/10.1038/nchembio881
doi: 10.1038/nchembio881 pubmed: 17496889
Tan HY, Eskandari R, Shen D, Zhu Y, Liu T-W, Willems LI, Alteen MG, Madden Z, Vocadlo DJ (2018) Direct one-step fluorescent labeling of O-GlcNAc-modified proteins in live cells using metabolic intermediates. J Am Chem Soc 140:15300–15308. https://doi.org/10.1021/jacs.8b08260
doi: 10.1021/jacs.8b08260 pubmed: 30296064
Yu S-H, Boyce M, Wands AM, Bond MR, Bertozzi CR, Kohler JJ (2012) Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc Natl Acad Sci U S A 109:4834–4839. https://doi.org/10.1073/pnas.1114356109
doi: 10.1073/pnas.1114356109 pubmed: 22411826 pmcid: 3323966
Kim EJ, Abramowitz LK, Bond MR, Love DC, Kang DW, Leucke HF, Kang DW, Ahn J-S, Hanover JA (2014) Versatile O-GlcNAc transferase assay for high-throughput identification of enzyme variants, substrates, and inhibitors. Bioconjug Chem 25:1025–1030. https://doi.org/10.1021/bc5001774
doi: 10.1021/bc5001774 pubmed: 24866374 pmcid: 4215860
Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169. https://doi.org/10.1016/j.jmr.2007.04.002
doi: 10.1016/j.jmr.2007.04.002 pubmed: 17468025
Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043. https://doi.org/10.1021/ja062025p
doi: 10.1021/ja062025p pubmed: 16834371
Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666. https://doi.org/10.1021/ja00105a005
doi: 10.1021/ja00105a005
Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson B 101:201–205. https://doi.org/10.1006/jmrb.1993.1033
doi: 10.1006/jmrb.1993.1033
Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson B 103:203–216. https://doi.org/10.1006/jmrb.1994.1032
doi: 10.1006/jmrb.1994.1032
Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81
doi: 10.1007/BF00227471 pubmed: 7881273
Weisemann R, Rüterjans H, Bermel W (1993) 3D triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins. J Biomol NMR 3:113–120. https://doi.org/10.1007/BF00242479
doi: 10.1007/BF00242479 pubmed: 8448431
Conibear AC, Rosengren KJ, Becker CFW, Kaehlig H (2019) Random coil shifts of posttranslationally modified amino acids. J Biomol NMR 73:587–599. https://doi.org/10.1007/s10858-019-00270-4
doi: 10.1007/s10858-019-00270-4 pubmed: 31317299 pmcid: 6859290

Auteurs

Léa El Hajjar (L)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
CNRS EMR9002 Integrative Structural Biology, Lille, France.

Clarisse Bridot (C)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
CNRS EMR9002 Integrative Structural Biology, Lille, France.

Marine Nguyen (M)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
CNRS EMR9002 Integrative Structural Biology, Lille, France.

François-Xavier Cantrelle (FX)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
CNRS EMR9002 Integrative Structural Biology, Lille, France.

Isabelle Landrieu (I)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France.
LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France.

Caroline Smet-Nocca (C)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France. caroline.smet-nocca@univ-lille.fr.
CNRS EMR9002 Integrative Structural Biology, Lille, France. caroline.smet-nocca@univ-lille.fr.

Classifications MeSH