The O-GlcNAc Modification of Recombinant Tau Protein and Characterization of the O-GlcNAc Pattern for Functional Study.
Chemoenzymatic labeling
Mass spectrometry
Mass tag
NMR spectroscopy
O-GlcNAc transferase
O-GlcNAcylation
Recombinant proteins
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
21
3
2024
pubmed:
21
3
2024
entrez:
21
3
2024
Statut:
ppublish
Résumé
The neuronal microtubule-associated tau protein is characterized in vivo by a large number of post-translational modifications along the entire primary sequence that modulates its function. The primary modification of tau is phosphorylation of serine/threonine or tyrosine residues that is involved in the regulation of microtubule binding and polymerization. In neurodegenerative disorders referred to as tauopathies including Alzheimer's disease, tau is abnormally hyperphosphorylated and forms fibrillar inclusions in neurons progressing throughout different brain area during the course of the disease. The O-β-linked N-acetylglucosamine (O-GlcNAc) is another reversible post-translational modification of serine/threonine residues that is installed and removed by the unique O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA), respectively. This modification was described as a potential modulator of tau phosphorylation and functions in the physiopathology. Moreover, reducing protein O-GlcNAc levels in the brain upon treatment of tauopathy mouse models with an OGA inhibitor reveals a beneficial effect on tau pathology and neurodegeneration. However, whether the role of tau O-GlcNAcylation is responsible of the protective effect against tau toxicity remains to be determined. The production of O-GlcNAc modified recombinant tau protein is a valuable tool for the investigations of the impact of O-GlcNAcylation on tau functions, modulation of interactions with partners and crosstalk with other post-translational modifications, including but not restricted to phosphorylation. We describe here the in vitro O-GlcNAcylation of tau with recombinant OGT for which we provide an expression and purification protocol. The use of the O-GlcNAc tau protein in functional studies requires the analytical characterization of the O-GlcNAc pattern. Here, we describe a method for the O-GlcNAc modification of tau protein with recombinant OGT and the analytical characterization of the resulting O-GlcNAc pattern by a combination of methods for the overall characterization of tau O-GlcNAcylation by chemoenzymatic labeling and mass spectrometry, as well as the quantitative, site-specific pattern by NMR spectroscopy.
Identifiants
pubmed: 38512671
doi: 10.1007/978-1-0716-3629-9_14
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
237-269Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190. https://doi.org/10.1038/nature23002
doi: 10.1038/nature23002
pubmed: 28678775
pmcid: 5552202
Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR, Wang K, Williams D, DeTure M, Dickson DW, Cook CN, Seyfried NT, Petrucelli L, Fitzpatrick AWP (2020) Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180:633–644.e12. https://doi.org/10.1016/j.cell.2020.01.027
doi: 10.1016/j.cell.2020.01.027
pubmed: 32032505
pmcid: 7491959
Zhang W, Tarutani A, Newell KL, Murzin AG, Matsubara T, Falcon B, Vidal R, Garringer HJ, Shi Y, Ikeuchi T, Murayama S, Ghetti B, Hasegawa M, Goedert M, Scheres SHW (2020) Novel tau filament fold in corticobasal degeneration. Nature 580:283–287. https://doi.org/10.1038/s41586-020-2043-0
doi: 10.1038/s41586-020-2043-0
pubmed: 32050258
pmcid: 7148158
Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert M, Scheres SH (2019) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. elife 8:e43584. https://doi.org/10.7554/eLife.43584
doi: 10.7554/eLife.43584
pubmed: 30720432
pmcid: 6375701
Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561:137–140. https://doi.org/10.1038/s41586-018-0454-y
doi: 10.1038/s41586-018-0454-y
pubmed: 30158706
pmcid: 6204212
Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, Ghetti B, Scheres SHW, Goedert M (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol 136:699–708. https://doi.org/10.1007/s00401-018-1914-z
doi: 10.1007/s00401-018-1914-z
pubmed: 30276465
pmcid: 6208733
Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, van Beers M, Tarutani A, Kametani F, Garringer HJ, Vidal R, Hallinan GI, Lashley T, Saito Y, Murayama S, Yoshida M, Tanaka H, Kakita A, Ikeuchi T, Robinson AC, Mann DMA, Kovacs GG, Revesz T, Ghetti B, Hasegawa M, Goedert M, Scheres SHW (2021) Structure-based classification of tauopathies. Nature 598:359–363. https://doi.org/10.1038/s41586-021-03911-7
doi: 10.1038/s41586-021-03911-7
pubmed: 34588692
pmcid: 7611841
Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271:28741–28744. https://doi.org/10.1074/jbc.271.46.28741
doi: 10.1074/jbc.271.46.28741
pubmed: 8910513
Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL, Mucke L (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18:1183–1189. https://doi.org/10.1038/nn.4067
doi: 10.1038/nn.4067
pubmed: 26192747
pmcid: 8049446
Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9:153–160
doi: 10.1074/mcp.M900268-MCP200
pubmed: 19692427
Smet-Nocca C, Broncel M, Wieruszeski J-M, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CPR (2011) Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol BioSyst 7:1420–1429. https://doi.org/10.1039/c0mb00337a
doi: 10.1039/c0mb00337a
pubmed: 21327254
Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ (2011) Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 40:857–868. https://doi.org/10.1007/s00726-010-0705-1
doi: 10.1007/s00726-010-0705-1
pubmed: 20706749
Bourré G, Cantrelle F-X, Kamah A, Chambraud B, Landrieu I, Smet-Nocca C (2018) Direct crosstalk between O-GlcNAcylation and phosphorylation of tau protein investigated by NMR spectroscopy. Front Endocrinol 9:595. https://doi.org/10.3389/fendo.2018.00595
doi: 10.3389/fendo.2018.00595
Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:10804–10809
doi: 10.1073/pnas.0400348101
pubmed: 15249677
pmcid: 490015
Yuzwa SA, Shan X, Jones BA, Zhao G, Woodward ML, Li X, Zhu Y, McEachern EJ, Silverman MA, Watson NV, Gong C-X, Vocadlo DJ (2014) Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol Neurodegener 9:42. https://doi.org/10.1186/1750-1326-9-42
doi: 10.1186/1750-1326-9-42
pubmed: 25344697
pmcid: 4232697
Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ, Davies GJ, Vocadlo DJ (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4:483–490. https://doi.org/10.1038/nchembio.96
doi: 10.1038/nchembio.96
pubmed: 18587388
Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8:393–399. https://doi.org/10.1038/nchembio.797
doi: 10.1038/nchembio.797
pubmed: 22366723
Cantrelle F-X, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS, Hackenberger CPR, Landrieu I, Smet-Nocca C (2021) Phosphorylation and O-GlcNAcylation of the PHF-1 epitope of tau protein induce local conformational changes of the C-terminus and modulate tau self-assembly into fibrillar aggregates. Front Mol Neurosci 14:661368. https://doi.org/10.3389/fnmol.2021.661368
doi: 10.3389/fnmol.2021.661368
pubmed: 34220449
pmcid: 8249575
Lefebvre T, Ferreira S, Dupont-Wallois L, Bussière T, Dupire M-J, Delacourte A, Michalski J-C, Caillet-Boudin M-L (2003) Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of tau proteins – a role in nuclear localization. Biochim Biophys Acta 1619:167–176
doi: 10.1016/S0304-4165(02)00477-4
pubmed: 12527113
Li X, Lu F, Wang J-Z, Gong C-X (2006) Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci 23:2078–2086. https://doi.org/10.1111/j.1460-9568.2006.04735.x
doi: 10.1111/j.1460-9568.2006.04735.x
pubmed: 16630055
Graham DL, Gray AJ, Joyce JA, Yu D, O’Moore J, Carlson GA, Shearman MS, Dellovade TL, Hering H (2014) Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology 79:307–313. https://doi.org/10.1016/j.neuropharm.2013.11.025
doi: 10.1016/j.neuropharm.2013.11.025
pubmed: 24326295
Hastings NB, Wang X, Song L, Butts BD, Grotz D, Hargreaves R, Fred Hess J, Hong K-LK, Huang CR-R, Hyde L, Laverty M, Lee J, Levitan D, Lu SX, Maguire M, Mahadomrongkul V, McEachern EJ, Ouyang X, Rosahl TW, Selnick H, Stanton M, Terracina G, Vocadlo DJ, Wang G, Duffy JL, Parker EM, Zhang L (2017) Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol Neurodegener 12:39. https://doi.org/10.1186/s13024-017-0181-0
doi: 10.1186/s13024-017-0181-0
pubmed: 28521765
pmcid: 5437664
Iyer SP, Hart GW (2003) Dynamic nuclear and cytoplasmic glycosylation: enzymes of O-GlcNAc cycling. Biochemistry 42:2493–2499. https://doi.org/10.1021/bi020685a
doi: 10.1021/bi020685a
pubmed: 12614143
Zachara NE, Hart GW (2006) Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta 1761:599–617. https://doi.org/10.1016/j.bbalip.2006.04.007
doi: 10.1016/j.bbalip.2006.04.007
pubmed: 16781888
Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022
doi: 10.1038/nature05815
pubmed: 17460662
Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66:315–335. https://doi.org/10.1146/annurev.biochem.66.1.315
doi: 10.1146/annurev.biochem.66.1.315
pubmed: 9242909
Dias WB, Hart GW (2007) O-GlcNAc modification in diabetes and Alzheimer’s disease. Mol BioSyst 3:766–772. https://doi.org/10.1039/b704905f
doi: 10.1039/b704905f
pubmed: 17940659
Wulff-Fuentes E, Berendt RR, Massman L, Danner L, Malard F, Vora J, Kahsay R, Olivier-Van Stichelen S (2021) The human O-GlcNAcome database and meta-analysis. Sci Data 8:25. https://doi.org/10.1038/s41597-021-00810-4
doi: 10.1038/s41597-021-00810-4
pubmed: 33479245
pmcid: 7820439
Leney AC, El Atmioui D, Wu W, Ovaa H, Heck AJR (2017) Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc Natl Acad Sci 114:E7255–E7261. https://doi.org/10.1073/pnas.1620529114
doi: 10.1073/pnas.1620529114
pubmed: 28808029
pmcid: 5584407
Hart GW, Greis KD, Dong LY, Blomberg MA, Chou TY, Jiang MS, Roquemore EP, Snow DM, Kreppel LK, Cole RN et al (1995) O-linked N-acetylglucosamine: the “yin-yang” of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol 376:115–123
doi: 10.1007/978-1-4615-1885-3_10
pubmed: 8597237
Butkinaree C, Park K, Hart GW (2009) O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800(2):96–106
doi: 10.1016/j.bbagen.2009.07.018
pubmed: 19647786
pmcid: 2815129
Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem 275:29179–29182
doi: 10.1074/jbc.R000010200
pubmed: 10924527
Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804
doi: 10.1074/mcp.M200048-MCP200
pubmed: 12438562
Saha A, Bello D, Fernández-Tejada A (2021) Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 50:10451–10485. https://doi.org/10.1039/D0CS01275K
doi: 10.1039/D0CS01275K
pubmed: 34338261
pmcid: 8451060
Gorelik A, van Aalten DMF (2020) Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 1:98–109. https://doi.org/10.1039/D0CB00052C
doi: 10.1039/D0CB00052C
pubmed: 34458751
pmcid: 8386111
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C (2022) Deciphering the structure and formation of amyloids in neurodegenerative diseases with chemical biology tools. Front Chem 10:886382. https://doi.org/10.3389/fchem.2022.886382
doi: 10.3389/fchem.2022.886382
pubmed: 35646824
pmcid: 9133342
Rexach JE, Rogers CJ, Yu S-H, Tao J, Sun YE, Hsieh-Wilson LC (2010) Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat Chem Biol 6:645–651. https://doi.org/10.1038/nchembio.412
doi: 10.1038/nchembio.412
pubmed: 20657584
pmcid: 2924450
Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3:339–348. https://doi.org/10.1038/nchembio881
doi: 10.1038/nchembio881
pubmed: 17496889
Tan HY, Eskandari R, Shen D, Zhu Y, Liu T-W, Willems LI, Alteen MG, Madden Z, Vocadlo DJ (2018) Direct one-step fluorescent labeling of O-GlcNAc-modified proteins in live cells using metabolic intermediates. J Am Chem Soc 140:15300–15308. https://doi.org/10.1021/jacs.8b08260
doi: 10.1021/jacs.8b08260
pubmed: 30296064
Yu S-H, Boyce M, Wands AM, Bond MR, Bertozzi CR, Kohler JJ (2012) Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc Natl Acad Sci U S A 109:4834–4839. https://doi.org/10.1073/pnas.1114356109
doi: 10.1073/pnas.1114356109
pubmed: 22411826
pmcid: 3323966
Kim EJ, Abramowitz LK, Bond MR, Love DC, Kang DW, Leucke HF, Kang DW, Ahn J-S, Hanover JA (2014) Versatile O-GlcNAc transferase assay for high-throughput identification of enzyme variants, substrates, and inhibitors. Bioconjug Chem 25:1025–1030. https://doi.org/10.1021/bc5001774
doi: 10.1021/bc5001774
pubmed: 24866374
pmcid: 4215860
Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169. https://doi.org/10.1016/j.jmr.2007.04.002
doi: 10.1016/j.jmr.2007.04.002
pubmed: 17468025
Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043. https://doi.org/10.1021/ja062025p
doi: 10.1021/ja062025p
pubmed: 16834371
Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666. https://doi.org/10.1021/ja00105a005
doi: 10.1021/ja00105a005
Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson B 101:201–205. https://doi.org/10.1006/jmrb.1993.1033
doi: 10.1006/jmrb.1993.1033
Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson B 103:203–216. https://doi.org/10.1006/jmrb.1994.1032
doi: 10.1006/jmrb.1994.1032
Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81
doi: 10.1007/BF00227471
pubmed: 7881273
Weisemann R, Rüterjans H, Bermel W (1993) 3D triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins. J Biomol NMR 3:113–120. https://doi.org/10.1007/BF00242479
doi: 10.1007/BF00242479
pubmed: 8448431
Conibear AC, Rosengren KJ, Becker CFW, Kaehlig H (2019) Random coil shifts of posttranslationally modified amino acids. J Biomol NMR 73:587–599. https://doi.org/10.1007/s10858-019-00270-4
doi: 10.1007/s10858-019-00270-4
pubmed: 31317299
pmcid: 6859290