cDC2 plasticity and acquisition of a DC3-like phenotype mediated by IL-6 and PGE2 in a patient-derived colorectal cancer organoids model.

3D model CD14+ cDC2 Colorectal cancer Conventional dendritic cells type 2 DC3 Dendritic cell dysfunction IL‐6 Immunosuppression Metastasis PGE2 Patient‐derived organoids Tumor microenvironment

Journal

European journal of immunology
ISSN: 1521-4141
Titre abrégé: Eur J Immunol
Pays: Germany
ID NLM: 1273201

Informations de publication

Date de publication:
21 Mar 2024
Historique:
revised: 06 03 2024
received: 10 11 2023
accepted: 08 03 2024
medline: 21 3 2024
pubmed: 21 3 2024
entrez: 21 3 2024
Statut: aheadofprint

Résumé

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14

Identifiants

pubmed: 38509863
doi: 10.1002/eji.202350891
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2350891

Subventions

Organisme : Radboudumc
Organisme : the Netherlands Organisation for Scientific Research
ID : 91719371
Organisme : IHSeed
ID : LSHM22042_SGF
Organisme : JO RUMC
Organisme : Health Holland
ID : LSHM18056-SGF

Informations de copyright

© 2024 The Authors. European Journal of Immunology published by Wiley‐VCH GmbH.

Références

Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C. J., Laversanne, M., Vignat, J., et al., Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023. 72: 338–344.
Rawla, P., Sunkara, T. and Barsouk, A., Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019. 14: 89–103.
Sawicki, T., Ruszkowska, M., Danielewicz, A., Niedźwiedzka, E., Arłukowicz, T. and Przybyłowicz, K. E., A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers (Basel) 2021. 13.
Janssen, E., Subtil, B., De La Jara Ortiz, F., Verheul, H. M. W. and Tauriello, D. V. F., Combinatorial immunotherapies for metastatic colorectal cancer. Cancers (Basel) 2020. 12: 1–29.
Kartikasari, A. E. R., Huertas, C. S., Mitchell, A. and Plebanski, M., Tumor‐induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front. Oncol. 2021. 11: 1.
Kamal, Y., Schmit, S. L., Frost, H. R. and Amos, C. I., The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy. Immunotherapy 2020. 14: imt–2020–0026.
Pedrosa, L., Esposito, F., Thomson, T. M. and Maurel, J., The tumor microenvironment in colorectal cancer therapy. Cancers (Basel) 2019. 11: 1172.
Subtil, B., Cambi, A., Tauriello, D. V. F. and De Vries, I. J. M., The Therapeutic potential of tackling tumor‐induced dendritic cell dysfunction in colorectal cancer. Front. Immunol. 2021. 12: 4048.
Lin, A., Schildknecht, A., Nguyen, L. T. and Ohashi, P. S., Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol. Lett. 2010. 127: 77–84.
Lucarini, V., Melaiu, O., Tempora, P., D'amico, S., Locatelli, F. and Fruci, D., Dendritic cells: behind the scenes of t‐cell infiltration into the tumor microenvironment. Cancers (Basel) 2021. 13: 1–22.
Gessani and Belardelli, Immune dysfunctions and immunotherapy in colorectal cancer: the role of dendritic cells. Cancers (Basel) 2019. 11: 1–17.
Michea, P., Noël, F., Zakine, E., Czerwinska, U., Sirven, P., Abouzid, O., Goudot, C., et al., Adjustment of dendritic cells to the breast‐cancer microenvironment is subset specific. Nat. Immunol. 2018. 19: 885–897.
Guilliams, M. and Merad, M., Expanding dendritic cell nomenclature. 0123456789: 2–3.
Segura, E., Human dendritic cell subsets: an updated view of their ontogeny and functional specialization. Eur. J. Immunol. 2022. 0: 1–9.
Lizée, G. and Gilliet, M., Human dendritic cells in cancer. Innate Immune Regul. Cancer Immunother. 2022. 9409: 121–145.
Anderson, D. A., Dutertre, C.‐A., Ginhoux, F. and Murphy, K. M., Genetic models of human and mouse dendritic cell development and function. Nat. Rev. Immunol. 2021. 21: 101–115.
Murphy, T. L. and Murphy, K. M., Dendritic cells in cancer immunology. Cell Mol. Immunol. 2022. 19: 3–13.
Del Prete, A., Salvi, V., Soriani, A., Laffranchi, M., Sozio, F., Bosisio, D. and Sozzani, S., Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol. Immunol. 2023. 20: 432–447.
Collin, M. and Bigley, V., Human dendritic cell subsets: an update. https://doi.org/10.1111/imm.12888.
Segura, E., Human dendritic cell subsets: an updated view of their ontogeny and functional specialization. Eur. J. Immunol. 2022. 52: 1759–1767.
Saito, Y., Komori, S., Kotani, T., Murata, Y. and Matozaki, T., The role of type‐2 conventional dendritic cells in the regulation of tumor immunity. Cancers (Basel) 2022. 14.
Cheng, S., Li, Z., Gao, R., Xing, B., Gao, Y., Yang, Y., Qin, S., et al., A pan‐cancer single‐cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 2021. 184: 792–809.e23.
Wculek, S. K., Cueto, F. J., Mujal, A. M., Melero, I., Krummel, M. F. and Sancho, D., Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020. 20: 7–24.
Bakdash, G., Buschow, S. I., Gorris, M. A. J., Halilovic, A., Hato, S. V., Sköld, A. E., Schreibelt, G., et al., Expansion of a BDCA1+ CD14+ myeloid cell population in melanoma patients may attenuate the efficacy of dendritic cell vaccines. Cancer Res. 2016. 76: 4332–4346.
Liu, Y., Zhang, Q., Xing, B., Luo, N., Gao, R., Yu, K., Hu, X., et al., Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell 2022: 1–14.
Laoui, D., Keirsse, J., Morias, Y., Van Overmeire, E., Geeraerts, X., Elkrim, Y., Kiss, M., et al., The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat. Commun. 2016. 7: 1–17.
Segura, E., Touzot, M., Bohineust, A., Cappuccio, A., Chiocchia, G., Hosmalin, A., Dalod, M., et al., Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 2013. 38: 336–348.
Becker, A.M.D., Decker, A.H., Flórez‐Grau, G., Bakdash, G., Röring, R.J., Stelloo, S., Vermeulen, M., et al., Inhibition of CSF‐1R and IL‐6R prevents conversion of cDC2s into immune incompetent tumor‐induced DC3s boosting DC‐driven therapy potential. Cell Reports Med. 2024. 5.
Bourdely, P., Anselmi, G., Vaivode, K., Ramos, R.N., Missolo‐Koussou, Y., Hidalgo, S., Tosselo, J., et al., Transcriptional and functional analysis of CD1c+ human dendritic cells identifies a CD163+ subset priming CD8+CD103+ T cells. Immunity 2020. 53: 335–352.e8.
Alcántara‐Hernández, M., Leylek, R., Wagar, L.E., Engleman, E.G., Keler, T., Marinkovich, M.P., Davis, M. M., et al., High‐dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity 2017. 47: 1037–1050.e6.
Villani, A.‐C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M., et al., Single‐cell RNA‐seq reveals new types of human blood dendritic cells, monocytes and progenitors. Science 2017. 356.
Dutertre, C.‐A., Becht, E., Irac, S. E., Khalilnezhad, A., Narang, V., Khalilnezhad, S., Ng, P. Y., et al., Single‐cell analysis of human mononuclear phagocytes reveals subset‐defining markers and identifies circulating inflammatory dendritic cells. Immunity 2019. 51: 573–589.e8.
Gerhard, G. M., Bill, R., Messemaker, M., Klein, A. M. and Pittet, M. J., Tumor‐infiltrating dendritic cell states are conserved across solid human cancers. J. Exp. Med. 2021. 218.
Cytlak, U., Resteu, A., Pagan, S., Green, K., Milne, P., Maisuria, S., Mcdonald, D., et al., Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans. Immunity 2020. 53: 353–370.e8.
Di Blasio, S., Van Wigcheren, G. F., Becker, A., Van Duffelen, A., Gorris, M., Verrijp, K., Stefanini, I., et al., The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture. Nat. Commun. 2020. 11: 1–17.
Subtil, B., Iyer, K. K., Poel, D., Bakkerus, L., Gorris, M. A. J., Escalona, J. C., Dries, K. V. D., et al., Dendritic cell phenotype and function in a 3D co‐culture model of patient‐derived metastatic colorectal cancer organoids. Front. Immunol. 2023. 14: 1–13.
Iyer, K. K. and Poel, D., High‐dose short‐term osimertinib treatment is effective in patient‐derived metastatic colorectal cancer organoids. Research Square 2023: 1–25.
Yuan, J., Li, X. and Yu, S., Cancer organoid co‐culture model system : novel approach to guide precision medicine. Front. Immunol. 2023..
Kim, J., Koo, B.‐K. and Knoblich, J. A., Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 2020. 21: 571–584.
Ooft, S. N., Weeber, F., Dijkstra, K. K., Mclean, C. M., Kaing, S., Van Werkhoven, E., Schipper, L., et al., Patient‐derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 2019. 11.
Yuki, K., Cheng, N., Nakano, M. and Kuo, C. J., Organoid models of tumor immunology. Trends Immunol. 2020. 41: 652–664.
Koh, W. H., Zayats, R., Lopez, P. and Murooka, T. T., Visualizing cellular dynamics and protein localization in 3D collagen. STAR Protoc. 2020. 1: 100203.
Cuenca‐Escalona, J., Flórez‐Grau, G., Van Den Dries, K., Cambi, A. and De Vries, I. J. M., PGE2‐EP4 signaling steers cDC2 maturation towards the induction of suppressive T cell responses. Eur. J. Immunol. 2023. https://doi.org/10.1002/EJI.202350770.
Gorris, M. A. J., Van Der Woude, L. L., Kroeze, L. I., Bol, K., Verrijp, K., Amir, A. L., Meek, J., et al., Paired primary and metastatic lesions of patients with ipilimumab‐treated melanoma: high variation in lymphocyte infiltration and HLA‐ABC expression whereas tumor mutational load is similar and correlates with clinical outcome. J. Immunother. Cancer 2022. 10: e004329.
Van Der Hoorn, I. A. E., Martynova, E., Subtil, B., Meek, J., Verrijp, K., Textor, J., Flórez‐Grau, G., et al., Detection of dendritic cell subsets in the tumor microenvironment by multiplex immunohistochemistry. Eur. J. Immunol. 2024. 54: e2350616.
Gorris, M. A. J., Halilovic, A., Rabold, K., Van Duffelen, A., Wickramasinghe, I. N., Verweij, D., Wortel, I. M. N., et al., Eight‐color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J. Immunol. 2018. 200: 347–354.
Wang, F., Wang, M., Yin, H., Long, Z., Zhu, L., Yu, H., Sun, H., et al., Association between plasma prostaglandin E2 level and colorectal cancer. Eur. J. Cancer Prev. 2021. 30: 59–68.
Bhat, A. A., Nisar, S., Singh, M., Ashraf, B., Masoodi, T., Prasad, C. P., Sharma, A., et al., Cytokine‐ and chemokine‐induced inflammatory colorectal tumor microenvironment: emerging avenue for targeted therapy. Cancer Commun. 2022. 42: 689–715.
Zafari, N., Khosravi, F., Rezaee, Z., Esfandyari, S., Bahiraei, M., Bahramy, A., Ferns, G. A., et al., The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J. Clin. Lab. Anal. 2022. 36.
Mager, L. F., Wasmer, M.‐H., Rau, T. T. and Krebs, P., Cytokine‐induced modulation of colorectal cancer. Front. Oncol. 2016. 6: 96.
Toyoshima, Y., Kitamura, H., Xiang, H., Ohno, Y., Homma, S., Kawamura, H., Takahashi, N., et al., IL6 modulates the immune status of the tumor microenvironment to facilitate metastatic colonization of colorectal cancer cells. Cancer Immunol. Res. 2019. 7: 1944–1957.

Auteurs

Beatriz Subtil (B)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Iris A E van der Hoorn (IAE)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.

Jorge Cuenca-Escalona (J)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Anouk M D Becker (AMD)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Mar Alvarez-Begue (M)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Kirti K Iyer (KK)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.

Jorien Janssen (J)

Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.

Tom van Oorschot (T)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Dennis Poel (D)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.

Mark A J Gorris (MAJ)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Koen van den Dries (K)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Alessandra Cambi (A)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Daniele V F Tauriello (DVF)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands.

I Jolanda M de Vries (IJM)

Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands.

Classifications MeSH