Natural and hybrid immunity after SARS-CoV-2 infection in children and adolescents.

Antibody COVID-19 Children Convalescent Immunity SARS-CoV-2 T cell Vaccination

Journal

Infection
ISSN: 1439-0973
Titre abrégé: Infection
Pays: Germany
ID NLM: 0365307

Informations de publication

Date de publication:
18 Mar 2024
Historique:
received: 07 10 2023
accepted: 24 02 2024
medline: 19 3 2024
pubmed: 19 3 2024
entrez: 19 3 2024
Statut: aheadofprint

Résumé

In contrast to adults, immune protection against SARS-CoV-2 in children and adolescents with natural or hybrid immunity is still poorly understood. The aim of this study was to analyze different immune compartments in different age groups and whether humoral immune reactions correlate with a cellular immune response. 72 children and adolescents with a preceding SARS-CoV-2 infection were recruited. 37 were vaccinated with an RNA vaccine (BNT162b2). Humoral immunity was analyzed 3-26 months (median 10 months) after infection by measuring Spike protein (S), nucleocapsid (NCP), and neutralizing antibodies (nAB). Cellular immunity was analyzed using a SARS-CoV-2-specific interferon-γ release assay (IGRA). All children and adolescents had S antibodies; titers were higher in those with hybrid immunity (14,900 BAU/ml vs. 2118 BAU/ml). NCP antibodies were detectable in > 90%. Neutralizing antibodies (nAB) were more frequently detected (90%) with higher titers (1914 RLU) in adolescents with hybrid immunity than in children with natural immunity (62.5%, 476 RLU). Children with natural immunity were less likely to have reactive IGRAs (43.8%) than adolescents with hybrid immunity (85%). The amount of interferon-γ released by T cells was comparable in natural and hybrid immunity. Spike antibodies are the most reliable markers to monitor an immune reaction against SARS-CoV-2. High antibody titers of spike antibodies and nAB correlated with cellular immunity, a phenomenon found only in adolescents with hybrid immunity. Hybrid immunity is associated with markedly higher antibody titers and a higher probability of a cellular immune response than a natural immunity.

Identifiants

pubmed: 38499828
doi: 10.1007/s15010-024-02225-w
pii: 10.1007/s15010-024-02225-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20173 (Corkid)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20173 (Corkid)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KX2121 (Immunebridge)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KX2121 (Immunebridge)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20173 (Corkid)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KX2121 (Immunebridge)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20173 (Corkid)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20173 (Corkid)
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20173 (Corkid)

Informations de copyright

© 2024. The Author(s).

Références

Rasmussen SA, Thompson LA. Coronavirus disease 2019 and children: what pediatric health care clinicians need to know. JAMA Pediatr. 2020;174:743.
pubmed: 32242896 doi: 10.1001/jamapediatrics.2020.1224
Yoshida M, Worlock KB, Huang N, Lindeboom RGH, Butler CR, Kumasaka N, et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature. 2022;602:321–7.
pubmed: 34937051 doi: 10.1038/s41586-021-04345-x
Loske J, Röhmel J, Lukassen S, Stricker S, Magalhães VG, Liebig J, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat Biotechnol. 2022;40:319–24.
pubmed: 34408314 doi: 10.1038/s41587-021-01037-9
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, et al. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol. 2023;246:109209.
pubmed: 36539107 doi: 10.1016/j.clim.2022.109209
Brinkmann F, Diebner HH, Matenar C, Schlegtendal A, Spiecker J, Eitner L, et al. Longitudinal rise in seroprevalence of SARS-CoV-2 infections in children in Western Germany—a blind spot in epidemiology? Infect Dis Rep. 2021;13:957–64.
pubmed: 34842714 pmcid: 8629019 doi: 10.3390/idr13040088
Lochmanová A, Martinek J, Tomášková H, Zelená H, Dieckmann K, Grage-Griebenow E, et al. Comparison of two commercially available interferon-γ release assays for T-cell-mediated immunity and evaluation of humoral immunity against SARS-CoV-2 in healthcare workers. Diagnostics. 2023;13:637.
pubmed: 36832126 pmcid: 9955378 doi: 10.3390/diagnostics13040637
Aiello A, Grossi A, Meschi S, Meledandri M, Vanini V, Petrone L, et al. Coordinated innate and T-cell immune responses in mild COVID-19 patients from household contacts of COVID-19 cases during the first pandemic wave. Front Immunol. 2022;13:920227.
pubmed: 35967321 pmcid: 9364317 doi: 10.3389/fimmu.2022.920227
Murugesan K, Jagannathan P, Altamirano J, Maldonado YA, Bonilla HF, Jacobson KB, et al. Long-term accuracy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interferon-γ release assay and its application in household investigation. Clin Infect Dis. 2022;75:e314–21.
pubmed: 35079772 doi: 10.1093/cid/ciac045
Morgiel E, Szmyrka M, Madej M, Sebastian A, Sokolik R, Andrasiak I, et al. Complete (humoral and cellular) response to vaccination against COVID-19 in a group of healthcare workers-assessment of factors affecting immunogenicity. Vaccines. 2022;10:710.
pubmed: 35632467 pmcid: 9146884 doi: 10.3390/vaccines10050710
Brinkmann F, Diebner HH, Matenar C, Schlegtendal A, Eitner L, Timmesfeld N, et al. Seroconversion rate and socio-economic and ethnic risk factors for SARS-CoV-2 infection in children in a population-based cohort, Germany, June 2020 to February 2021. Eurosurveillance. 2022. https://doi.org/10.2807/1560-7917.ES.2022.27.37.2101028 .
doi: 10.2807/1560-7917.ES.2022.27.37.2101028 pubmed: 36367010 pmcid: 9650706
Lange B, Jaeger VK, Harries M, Rücker V, Streeck H, Blaschke S, et al. Estimates of protection levels against SARS-CoV-2 infection and severe COVID-19 in Germany before the 2022/2023 winter season: the IMMUNEBRIDGE project. Infection. 2023. https://doi.org/10.1007/s15010-023-02071-2 .
doi: 10.1007/s15010-023-02071-2 pubmed: 37530919 pmcid: 10811028
Engels G, Oechsle A-L, Schlegtendal A, Maier C, Holzwarth S, Streng A, et al. SARS-CoV-2 sero-immunity and quality of life in children and adolescents in relation to infections and vaccinations: the IMMUNEBRIDGE KIDS cross-sectional study, 2022. Infection. 2023. https://doi.org/10.1007/s15010-023-02052-5 .
doi: 10.1007/s15010-023-02052-5 pubmed: 37530919 pmcid: 10811028
Zettl F, Meister TL, Vollmer T, Fischer B, Steinmann J, Krawczyk A, et al. Rapid quantification of SARS-CoV-2-neutralizing antibodies using propagation-defective vesicular stomatitis virus pseudotypes. Vaccines. 2020;8:386.
pubmed: 32679691 pmcid: 7563800 doi: 10.3390/vaccines8030386
Goletti D, Petrone L, Manissero D, Bertoletti A, Rao S, Ndunda N, et al. The potential clinical utility of measuring severe acute respiratory syndrome coronavirus 2-specific T-cell responses. Clin Microbiol Infect. 2021;27:1784–9.
pubmed: 34256141 pmcid: 8272618 doi: 10.1016/j.cmi.2021.07.005
Hartley GE, Edwards ESJ, Aui PM, Varese N, Stojanovic S, McMahon J, et al. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci Immunol. 2020;5:eabf8891.
pubmed: 33443036 pmcid: 7877496 doi: 10.1126/sciimmunol.abf8891
Anand SP, Prévost J, Nayrac M, Beaudoin-Bussières G, Benlarbi M, Gasser R, et al. Longitudinal analysis of humoral immunity against SARS-CoV-2 Spike in convalescent individuals up to 8 months post-symptom onset. Cell Rep Med. 2021;2:100290.
pubmed: 33969322 pmcid: 8097665 doi: 10.1016/j.xcrm.2021.100290
Bonifacius A, Tischer-Zimmermann S, Dragon AC, Gussarow D, Vogel A, Krettek U, et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021;54:340-354.e6.
pubmed: 33567252 pmcid: 7871825 doi: 10.1016/j.immuni.2021.01.008
Feng C, Shi J, Fan Q, Wang Y, Huang H, Chen F, et al. Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery. Nat Commun. 2021;12:4984.
pubmed: 34404803 pmcid: 8370972 doi: 10.1038/s41467-021-25312-0
Jacobsen E-M, Fabricius D, Class M, Topfstedt F, Lorenzetti R, Janowska I, et al. High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection. Nat Commun. 2022;13:7315.
pubmed: 36437276 pmcid: 9701757 doi: 10.1038/s41467-022-35055-1
Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K, Chen Y-K, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26:845–8.
pubmed: 32350462 doi: 10.1038/s41591-020-0897-1
Dobaño C, Santano R, Jiménez A, Vidal M, Chi J, Rodrigo Melero N, et al. Immunogenicity and crossreactivity of antibodies to the nucleocapsid protein of SARS-CoV-2: utility and limitations in seroprevalence and immunity studies. Transl Res. 2021;232:60–74.
pubmed: 33582244 pmcid: 7879156 doi: 10.1016/j.trsl.2021.02.006
Peluso MJ, Takahashi S, Hakim J, Kelly JD, Torres L, Iyer NS, et al. SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay. Sci Adv. 2021;7:eabh3409.
pubmed: 34330709 pmcid: 8324059 doi: 10.1126/sciadv.abh3409
Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:eabf4063.
pubmed: 33408181 doi: 10.1126/science.abf4063
Henss L, Scholz T, Von Rhein C, Wieters I, Borgans F, Eberhardt FJ, et al. Analysis of humoral immune responses in patients with severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 2021;223:56–61.
pubmed: 33128369 doi: 10.1093/infdis/jiaa680
Rijkers G, Murk J-L, Wintermans B, Van Looy B, Van Den Berge M, Veenemans J, et al. Differences in antibody kinetics and functionality between severe and mild severe acute respiratory syndrome coronavirus 2 infections. J Infect Dis. 2020;222:1265–9.
pubmed: 32726417 doi: 10.1093/infdis/jiaa463
Pušnik J, König J, Mai K, Richter E, Zorn J, Proksch H, et al. Persistent maintenance of intermediate memory b cells following SARS-CoV-2 infection and vaccination recall response. J Virol. 2022;96:e00760-e822.
pubmed: 35862718 pmcid: 9364791 doi: 10.1128/jvi.00760-22
Tan C-W, Chia W-N, Young BE, Zhu F, Lim B-L, Sia W-R, et al. Pan-sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors. N Engl J Med. 2021;385:1401–6.
pubmed: 34407341 doi: 10.1056/NEJMoa2108453
Wratil PR, Stern M, Priller A, Willmann A, Almanzar G, Vogel E, et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat Med. 2022;28:496–503.
pubmed: 35090165 doi: 10.1038/s41591-022-01715-4
Heinen N, Marheinecke CS, Bessen C, Blazquez-Navarro A, Roch T, Stervbo U, et al. In-depth analysis of T cell immunity and antibody responses in heterologous prime-boost-boost vaccine regimens against SARS-CoV-2 and Omicron variant. Front Immunol. 2022;13:1062210.
pubmed: 36618413 pmcid: 9811676 doi: 10.3389/fimmu.2022.1062210
Dourdouna M-M, Tatsi E-B, Syriopoulou V, Michos A. Evaluation of T cell responses with the QuantiFERON SARS-CoV-2 assay in individuals with 3 doses of BNT162b2 vaccine, SARS-CoV-2 infection, or hybrid immunity. Diagn Microbiol Infect Dis. 2023;106:115948.
pubmed: 37094435 pmcid: 10060202 doi: 10.1016/j.diagmicrobio.2023.115948
Ouyang F, Zhang H, Jiang Y, Wang H, Peng T, Xi C, et al. Humoral immune response characteristics of the elderly, children and pregnant women after XBB infection. J Infect. 2023;87:e96–9.
pubmed: 37844670 doi: 10.1016/j.jinf.2023.10.006
Walls AC, Sprouse KR, Bowen JE, Joshi A, Franko N, Navarro MJ, et al. SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses. Cell. 2022;185:872-880.e3.
pubmed: 35123650 pmcid: 8769922 doi: 10.1016/j.cell.2022.01.011
Barreiro P, Sanz JC, San Román J, Pérez-Abeledo M, Carretero M, Megías G, et al. A pilot study for the evaluation of an interferon gamma release assay (IGRA) to measure T-cell immune responses after SARS-CoV-2 infection or vaccination in a unique cloistered cohort. J Clin Microbiol. 2022;60:e02199-e2221.
pubmed: 35020419 pmcid: 8925901 doi: 10.1128/jcm.02199-21
Wakui M, Uwamino Y, Yatabe Y, Nakagawa T, Sakai A, Kurafuji T, et al. Assessing anti-SARS-CoV-2 cellular immunity in 571 vaccines by using an IFN-γ release assay. Eur J Immunol. 2022;52:1961–71.
pubmed: 36250411 pmcid: 9874394 doi: 10.1002/eji.202249794
Seidel A, Jacobsen E-M, Fabricius D, Class M, Zernickel M, Blum C, et al. Serum neutralizing capacity and T-cell response against the omicron BA.1 variant in seropositive children and their parents one year after SARS-CoV-2 infection. Front Pediatr. 2023;11:1020865.
pubmed: 37051428 pmcid: 10083310 doi: 10.3389/fped.2023.1020865
Cohen CA, Li APY, Hachim A, Hui DSC, Kwan MYW, Tsang OTY, et al. SARS-CoV-2 specific T cell responses are lower in children and increase with age and time after infection. Nat Commun. 2021;12:4678.
pubmed: 34326343 pmcid: 8322064 doi: 10.1038/s41467-021-24938-4
Tormo N, Navalpotro D, Martínez-Serrano M, Moreno M, Grosson F, Tur I, et al. Commercial Interferon-gamma release assay to assess the immune response to first and second doses of mRNA vaccine in previously COVID-19 infected versus uninfected individuals. Diagn Microbiol Infect Dis. 2022;102:115573.
pubmed: 35121268 doi: 10.1016/j.diagmicrobio.2021.115573
Busà R, Sorrentino MC, Russelli G, Amico G, Miceli V, Miele M, et al. Specific anti-SARS-CoV-2 humoral and cellular immune responses after booster dose of BNT162b2 Pfizer-BioNTech mRNA-based vaccine: integrated study of adaptive immune system components. Front Immunol. 2022;13:856657.
pubmed: 35401503 pmcid: 8987231 doi: 10.3389/fimmu.2022.856657
Hollstein MM, Münsterkötter L, Schön MP, Bergmann A, Husar TM, Abratis A, et al. Long-term effects of homologous and heterologous SARS-COV -2 vaccination on humoral and cellular immune responses. Allergy. 2022;77:2560–4.
pubmed: 35567394 doi: 10.1111/all.15373
Kampmann B, Whittaker E, Williams A, Walters S, Gordon A, Martinez-Alier N, et al. Interferon- release assays do not identify more children with active tuberculosis than the tuberculin skin test. Eur Respir J. 2009;33:1374–82.
pubmed: 19196815 doi: 10.1183/09031936.00153408
Buonsenso D, Seddon JA, Esposito S, Barcellini L. QuantiFERON-TB gold plus performance in children: a narrative review. Pediatr Infect Dis J. 2023;42:e158–65.
pubmed: 36795574 pmcid: 10097492 doi: 10.1097/INF.0000000000003877
Tough DR, Sun S, Zhang X, Sprent J. Stimulation of naive and memory T cells by cytokines. Immunol Rev. 1999;170:39–47.
pubmed: 10566140 doi: 10.1111/j.1600-065X.1999.tb01327.x
Kim T-S, Shin E-C. The activation of bystander CD8+ T cells and their roles in viral infection. Exp Mol Med. 2019;51:1–9.
pubmed: 31827074 pmcid: 6881327
Nam M, Yun SG, Kim S, Kim CG, Cha JH, Lee C, et al. Humoral and cellular immune responses to vector, mix-and-match, or mRNA vaccines against SARS-CoV-2 and the relationship between the two immune responses. Microbiol Spectr. 2022;10:e02495-e2521.
pubmed: 35946811 pmcid: 9431224 doi: 10.1128/spectrum.02495-21

Auteurs

T Rothoeft (T)

University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany. tobias.rothoeft@rub.de.

C Maier (C)

University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.

A Talarico (A)

University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.

A Hoffmann (A)

University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.

A Schlegtendal (A)

University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.

B Lange (B)

Department of Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany.

A Petersmann (A)

University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany.
University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.

R Denz (R)

Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany.

N Timmesfeld (N)

Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany.

N Toepfner (N)

Department of Pediatrics, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

E Vidal-Blanco (E)

Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.

S Pfaender (S)

Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.

T Lücke (T)

University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.

F Brinkmann (F)

University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.
University Children's Hospital, Lübeck, Germany.
Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany.

Classifications MeSH