Association between hippocampal microglia, AD and LATE-NC, and cognitive decline in older adults.
Alzheimer's disease
LATE-NC
cognitive decline
hippocampal microglia
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
17 Mar 2024
17 Mar 2024
Historique:
received:
26
10
2023
accepted:
29
01
2024
medline:
18
3
2024
pubmed:
18
3
2024
entrez:
18
3
2024
Statut:
aheadofprint
Résumé
This study investigates the relationship between microglia inflammation in the hippocampus, brain pathologies, and cognitive decline. Participants underwent annual clinical evaluations and agreed to brain donation. Neuropathologic evaluations quantified microglial burden in the hippocampus, amyloid beta (Aβ), tau tangles, and limbic age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy neuropathologic changes (LATE-NC), and other common brain pathologies. Mixed-effect and linear regression models examined the association of microglia with a decline in global and domain-specific cognitive measures, and separately with brain pathologies. Path analyses estimated direct and indirect effects of microglia on global cognition. Hippocampal microglia were associated with a faster decline in global cognition, specifically in episodic memory, semantic memory, and perceptual speed. Tau tangles and LATE-NC were independently associated with microglia. Other pathologies, including Aβ, were not related. Regional hippocampal burden of tau tangles and TDP-43 accounted for half of the association of microglia with cognitive decline. Microglia inflammation in the hippocampus contributes to cognitive decline. Tau tangles and LATE-NC partially mediate this association.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIA NIH HHS
ID : R01AG017917
Pays : United States
Organisme : NIA NIH HHS
ID : P30AG072975
Pays : United States
Organisme : NIA NIH HHS
ID : P30AG010161
Pays : United States
Organisme : NIA NIH HHS
ID : R01AG015819
Pays : United States
Organisme : NIA NIH HHS
ID : R01AG064233
Pays : United States
Organisme : NIA NIH HHS
ID : R01AG067482
Pays : United States
Organisme : NIA NIH HHS
ID : R01AG034374
Pays : United States
Organisme : NIA NIH HHS
ID : K01AG075177
Pays : United States
Informations de copyright
© 2024 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Références
Korin B, Ben-Shaanan TL, Schiller M, et al. High-dimensional, single-cell characterization of the brain's immune compartment. Nat Neurosci. 2017;20:1300-1309.
Sierra A, Paolicelli RC, Kettenmann H. Cien Años de Microglía: milestones in a century of microglial research. Trends Neurosci. 2019;42:778-792.
Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer's disease trajectory. Brain. 2017;140:792-803.
Olah M, Patrick E, Villani A, et al. A transcriptomic atlas of aged human microglia. Nat Commun. 2018;9:539-545.
Sudwarts A, Ramesha S, Gao T, et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener. 2022;17:33-x.
Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease. Neuron. 2019;103:820-835.e7.
Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503-1527.
Yu L, Boyle PA, Dawe RJ, Bennett DA, Arfanakis K, Schneider JA. Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology. 2020;94:e142-e152.
Kapasi A, Yu L, Boyle PA, Barnes LL, Bennett DA, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy, ADNC pathology, and cognitive decline in aging. Neurology. 2020;95:e1951-e1962.
Bennett DA, Wilson RS, Arvanitakis Z, Boyle PA, de Toledo-Morrell L, Schneider JA. Selected findings from the religious orders study and rush memory and aging project. J Alzheimers Dis. 2013;33(1):397.
Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA. Late-life cognitive decline is associated with hippocampal volume, above and beyond its associations with traditional neuropathologic indices. Alzheimers Dement. 2020;16:209-218.
Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis. 2009;18:691-701.
Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012;8:1-13.
Kapasi A, Poirier J, Hedayat A, et al. High-throughput digital quantification of Alzheimer disease pathology and associated infrastructure in large autopsy studies. J Neuropathol Exp Neurol. 2023;82:976-986.
Kapasi A, Leurgans SE, Arvanitakis Z, Barnes LL, Bennett DA, Schneider JA. Abeta (amyloid beta) and tau tangle pathology modifies the association between small vessel disease and cortical microinfarcts. Stroke. 2021;52:1012-1021.
Nag S, Yu L, Boyle PA, Leurgans SE, Bennett DA, Schneider JA. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer's disease. Acta Neuropathol Commun. 2018;6:33-33.
Nag S, Yu L, Capuano AW, et al. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann Neurol. 2015;77:942-952.
Schneider JA, Boyle PA, Arvanitakis Z, Bienias JL, Bennett DA. Subcortical infarcts, Alzheimer's disease pathology, and memory function in older persons. Ann Neurol. 2007;62:59-66.
Arvanitakis Z, Leurgans SE, Barnes LL, Bennett DA, Schneider JA. Microinfarct pathology, dementia, and cognitive systems. Stroke. 2011;42:722-727.
Arvanitakis Z, Capuano AW, Leurgans SE, Buchman AS, Bennett DA, Schneider JA. The relationship of cerebral vessel pathology to brain microinfarcts. Brain Pathol. 2017;27:77-85.
Boyle P, Yu L, Nag S, et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology. 2015;85:1930-1936.
Schneider JA, Arvanitakis Z, Yu L, Boyle PA, Leurgans SE, Bennett DA. Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain. 2012;135:3005-3014.
Boyle PA, Wang T, Yu L, et al. To what degree is late life cognitive decline driven by age-related neuropathologies? Brain. 2021;144:2166-2175.
Malpetti M, Passamonti L, Rittman T, et al. Neuroinflammation and tau colocalize in vivo in progressive supranuclear palsy. Ann Neurol. 2020;88:1194-1204.
Chen Y, Lin R, Huang H, Xue Y, Tao Q. Microglial activation, tau pathology, and neurodegeneration biomarkers predict longitudinal cognitive decline in alzheimer's disease continuum. Front Aging Neurosci. 2022;14:848180.
Stein DJ, Vasconcelos MF, Albrechet-Souza L, Cereser KMM, de Almeida RMM. Microglial over-activation by social defeat stress contributes to anxiety- and depressive-like behaviors. Front Behav Neurosci. 2017;11:207.
Piirainen S, Youssef A, Song C, et al. Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? Neurosci Biobehav Rev. 2017;77:148-164.
Lehmann ML, Weigel TK, Cooper HA, Elkahloun AG, Kigar SL, Herkenham M. Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci Rep. 2018;8:11240-11248.
Kaneshwaran K, Olah M, Tasaki S, et al. Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer's dementia. Sci Adv. 2019;5:eaax7331.
Parhizkar S, Gent G, Chen Y, et al. Sleep deprivation exacerbates microglial reactivity and Abeta deposition in a TREM2-dependent manner in mice. Sci Transl Med. 2023;15:eade6285.
Magni G, Riboldi B, Ceruti S. Modulation of glial cell functions by the gut-brain axis: a role in neurodegenerative disorders and pain transmission. Cells. 2023;12:1612. doi:10.3390/cells12121612
Damiani F, Cornuti S, Tognini P. The gut-brain connection: exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology. 2023;231:109491.
Spanic E, Langer Horvat L, Ilic K, Hof PR, Simic G. NLRP1 inflammasome activation in the hippocampal formation in Alzheimer's disease: correlation with neuropathological changes and unbiasedly estimated neuronal loss. Cells. 2022;11:2223. doi:10.3390/cells11142223
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia. 2022;70:239-255.
Peng AYT, Agrawal I, Ho WY, et al. Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. Proc Natl Acad Sci U S A. 2020;117:29101-29112.
Licht-Murava A, Meadows SM, Palaguachi F, et al. Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines. Sci Adv. 2023;9:eade1282.
Xie M, Liu YU, Zhao S, et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat Neurosci. 2022;25:26-38.
Ulrich JD, Ulland TK, Mahan TE, et al. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med. 2018;215:1047-1058.
Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nat Commun. 2015;6:6176.
Grabert K, Michoel T, Karavolos MH, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 2016;19:504-516.
Lau V, Ramer L, Tremblay M. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer's disease. Nat Commun. 2023;14:1670-167s3.
Maphis N, Xu G, Kokiko-Cochran ON, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138:1738-1755.
Ingala S, De Boer C, Masselink LA, et al. Application of the ATN classification scheme in a population without dementia: findings from the EPAD cohort. Alzheimers Dement. 2021;17:1189-1204.
Van Etten EJ, Bharadwaj PK, Hishaw GA, et al. Influence of regional white matter hyperintensity volume and apolipoprotein E epsilon4 status on hippocampal volume in healthy older adults. Hippocampus. 2021;31:469-480.
Kim J, Na HK, Shin JH, et al. Atrophy patterns in cerebral amyloid angiopathy with and without cortical superficial siderosis. Neurology. 2018;90:e1751-e1758.
Wearn AR, Nurdal V, Saunders-Jennings E, et al. T2 heterogeneity: a novel marker of microstructural integrity associated with cognitive decline in people with mild cognitive impairment. Alzheimers Res Ther. 2020;12:105-109.
Wisse LE, Xie L, Das SR, et al. Alzheimers Disease Neuroimaging Initiative, Tau pathology mediates age effects on medial temporal lobe structure. Neurobiol Aging. 2022;109:135-144.