Anticipating interpersonal sensitivity: A predictive model for early intervention in psychological disorders in college students.
Interpersonal sensitivity
Kernel extreme learning machine
Moth-flame optimization
Optimization
Psychological disorders
Journal
Computers in biology and medicine
ISSN: 1879-0534
Titre abrégé: Comput Biol Med
Pays: United States
ID NLM: 1250250
Informations de publication
Date de publication:
07 Mar 2024
07 Mar 2024
Historique:
received:
08
12
2023
revised:
17
01
2024
accepted:
12
02
2024
medline:
17
3
2024
pubmed:
17
3
2024
entrez:
16
3
2024
Statut:
aheadofprint
Résumé
Psychological disorders, notably social anxiety and depression, exert detrimental effects on university students, impeding academic achievement and overall development. Timely identification of interpersonal sensitivity becomes imperative to implement targeted support and interventions. This study selected 958 freshmen from higher education institutions in Zhejiang province as the research sample. Utilizing the runge-kutta search and elite levy spreading enhanced moth-flame optimization (MFO) in conjunction with the kernel extreme learning machine (KELM), we propose an efficient intelligent prediction model, namely bREMFO-KELM, for predicting the interpersonal sensitivity of college students. IEEE CEC 2017 benchmark functions and the interpersonal sensitivity dataset were employed as the basis for detailed comparisons with peer-reviewed studies and well-known machine learning models. The experimental results demonstrate the outstanding performance of the bREMFO-KELM model in predicting the sensitivity of interpersonal relationships in college students, achieving an impressive accuracy rate of 97.186%. In-depth analysis reveals that the prediction of interpersonal sensitivity in college students is closely associated with multiple features, including easily hurt in relationships, shy and uneasy with the opposite sex, feeling inferior to others, discomfort when observed or discussed, and blame and criticize others. These features are not only crucial for the accuracy of the prediction model but also provide valuable information for a deeper understanding of the sensitivity of college students' interpersonal relationships. In conclusion, the bREMFO-KELM model excels not only in performance but also possesses a high degree of interpretability, providing robust support for predicting the sensitivity of interpersonal relationships in college students.
Identifiants
pubmed: 38492456
pii: S0010-4825(24)00218-X
doi: 10.1016/j.compbiomed.2024.108134
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
108134Informations de copyright
Copyright © 2024 Elsevier Ltd. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.