Blueprinting extendable nanomaterials with standardized protein blocks.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
13 Mar 2024
13 Mar 2024
Historique:
received:
06
06
2023
accepted:
09
02
2024
medline:
14
3
2024
pubmed:
14
3
2024
entrez:
14
3
2024
Statut:
aheadofprint
Résumé
A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies, in comparison, has been much more complex, largely owing to the irregular shapes of protein structures
Identifiants
pubmed: 38480887
doi: 10.1038/s41586-024-07188-4
pii: 10.1038/s41586-024-07188-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
doi: 10.1093/nar/28.1.235
pubmed: 10592235
pmcid: 102472
Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).
doi: 10.1126/science.1257452
pubmed: 25342807
Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).
doi: 10.1126/science.add1964
pubmed: 36108048
pmcid: 9724707
Fallas, J. A. et al. Computational design of self-assembling cyclic protein homo-oligomers. Nat. Chem. 9, 353–360 (2017).
doi: 10.1038/nchem.2673
pubmed: 28338692
Ljubetič, A. et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 35, 1094–1101 (2017).
doi: 10.1038/nbt.3994
pubmed: 29035374
Hsia, Y. et al. Design of multi-scale protein complexes by hierarchical building block fusion. Nat. Commun. 12, 2294 (2021).
doi: 10.1038/s41467-021-22276-z
pubmed: 33863889
pmcid: 8052403
King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171–1174 (2012).
doi: 10.1126/science.1219364
pubmed: 22654060
pmcid: 4138882
Sheffler, W. et al. Fast and versatile sequence-independent protein docking for nanomaterials design using RPXDock. PLoS Comput. Biol. 19, e1010680 (2023).
doi: 10.1371/journal.pcbi.1010680
pubmed: 37216343
pmcid: 10237659
Bethel, N. P. et al. Precisely patterned nanofibres made from extendable protein multiplexes. Nat. Chem. 15, 1664–1671 (2023).
Brodin, J. D. et al. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4, 375–382 (2012).
doi: 10.1038/nchem.1290
pubmed: 22522257
pmcid: 3335442
Sinclair, J. C., Davies, K. M., Vénien-Bryan, C. & Noble, M. E. M. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat. Nanotechnol. 6, 558–562 (2011).
doi: 10.1038/nnano.2011.122
pubmed: 21804552
Ben-Sasson, A.J. et al. Design of biologically active binary protein 2D materials. Nature 589, 468–473 (2021).
doi: 10.1038/s41586-020-03120-8
pubmed: 33408408
pmcid: 7855610
Li, Z. et al. Accurate computational design of three-dimensional protein crystals. Nat. Mater. 22, 1556–1563 (2023).
Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl Acad. Sci. USA 98, 2217–2221 (2001).
doi: 10.1073/pnas.041614998
pubmed: 11226219
pmcid: 30118
Woolfson, D. N. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J. Biol. Chem. 299, 104579 (2023).
doi: 10.1016/j.jbc.2023.104579
pubmed: 36871758
pmcid: 10124910
Grigoryan, G. & Degrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011).
doi: 10.1016/j.jmb.2010.08.058
pubmed: 20932976
Brunette, T. J. et al. Exploring the repeat protein universe through computational protein design. Nature 528, 580–584 (2015).
doi: 10.1038/nature16162
pubmed: 26675729
pmcid: 4845728
Huang, P.-S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).
doi: 10.1126/science.1257481
pubmed: 25342806
pmcid: 4612401
Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).
doi: 10.1021/acs.jctc.7b00125
pubmed: 28430426
pmcid: 5717763
Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).
doi: 10.1126/science.add2187
pubmed: 36108050
pmcid: 9997061
Correnti, C. E. et al. Engineering and functionalization of large circular tandem repeat protein nanoparticles. Nat. Struct. Mol. Biol. 27, 342–350 (2020).
doi: 10.1038/s41594-020-0397-5
pubmed: 32203491
pmcid: 7336869
Coxeter, H. S. M. Regular Polytopes (Courier Corp., 1973).
Yeates, T. O. Geometric principles for designing highly symmetric self-assembling protein nanomaterials. Annu. Rev. Biophys. 46, 23–42 (2017).
doi: 10.1146/annurev-biophys-070816-033928
pubmed: 28301774
Walshaw, J. & Woolfson, D. N. Extended knobs-into-holes packing in classical and complex coiled-coil assemblies. J. Struct. Biol. 144, 349–361 (2003).
doi: 10.1016/j.jsb.2003.10.014
pubmed: 14643203
Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2005).
doi: 10.1038/nbt1172
pubmed: 16369541
Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2016).
doi: 10.1038/nmeth.4074
pubmed: 27869816
Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662–666 (1958).
doi: 10.1038/181662a0
pubmed: 13517261
Pyles, H., Zhang, S., De Yoreo, J. J. & Baker, D. Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature 571, 251–256 (2019).
doi: 10.1038/s41586-019-1361-6
pubmed: 31292559
pmcid: 6948101
Davila-Hernandez, F. A. et al. Directing polymorph specific calcium carbonate formation with de novo protein templates. Nat. Commun. 14, 8191 (2023).
doi: 10.1038/s41467-023-43608-1
pubmed: 38097544
pmcid: 10721895
Kibler, R. D. et al. Stepwise design of pseudosymmetric protein hetero-oligomers. Preprint at bioRxiv https://doi.org/10.1101/2023.04.07.535760 (2023).
Wintersinger, C. M. et al. Multi-micron crisscross structures grown from DNA-origami slats. Nat. Nanotechnol. 18, 281–289 (2023).
doi: 10.1038/s41565-022-01283-1
pubmed: 36543881
Bohlin, J., Turberfield, A. J., Louis, A. A. & Šulc, P. Designing the self-assembly of arbitrary shapes using minimal complexity building blocks. ACS Nano 17, 5387–5398 (2023).
doi: 10.1021/acsnano.2c09677
pubmed: 36763807
Petersen, P., Tikhomirov, G. & Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 9, 5362 (2018).
doi: 10.1038/s41467-018-07805-7
pubmed: 30560865
pmcid: 6299139
Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).
doi: 10.1038/s41563-021-01020-4
pubmed: 34127822
pmcid: 7611604
Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).
doi: 10.1038/nature24651
pubmed: 29219966